【概率与统计】正态分布(Normal Distribution)

本文介绍了正态分布,又称高斯分布,它由均值μ和标准差σ控制。σ越小,分布越集中;σ越大,分布越分散。二维正态分布和N维正态分布的概念也被提及,其中二维正态分布常用于图像处理中的高斯滤波。此外,文章还提到了使用MATLAB绘制正态分布PDF图的方法。
摘要由CSDN通过智能技术生成

连续型随机变量最常用的分布就是 正态分布(normal distribution),也称为高斯分布(Gaussian distribution):

N(x;μ,σ2)=12πσ2exp(12σ2(xμ)2) N ( x ; μ , σ 2 ) = 1 2 π σ 2 exp ( − 1 2 σ 2 ( x − μ ) 2 )

Normal Disatributions

上图画出了几组正太分布的PDF。可见,正太分布由两个参数控制

  • μR μ ∈ R , 给出了中心密度峰值的坐标,同时这也是分布的期望, E[x]=μ E [ x ] = μ
  • σ(0,) σ ∈ ( 0 , ∞ ) ,给出了分布的标准差,方差用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值