【线性代数】转置矩阵与逆矩阵, 矩阵的秩(transpose matrix & inverse matrix, rank)

矩阵的转置 – 转置矩阵

矩阵中行号和列号相等的元素构成的对角线被称为矩阵的主对角线(main diagonal), 矩阵的转置就是以这条轴为镜像,进行 坐下角与右上角元素的翻转, 即

  • 主对角线上的元素不动
  • 其余元素行号和列号互换,变换位置

得到的新矩阵叫做原矩阵的转置矩阵。

(AT)i,j=Aj,i

这里写图片描述

矩阵的求逆 – 逆矩阵

矩阵A 的逆矩阵,记做 A1, 定义为

A1A=AA1=In
, 矩阵的逆是一个很重要的概念,因为对于一般的线性方程
Ax=b
(其中 A 是矩阵, x,b是向量), 其解析解为
x=A1b
. 对于一个任意的矩阵A q求逆,有两个核心问题

  1. A1 是否存在
  2. A1 存在,如何求解出来

首先,判断是否存在,我们有

只有非奇异的方阵,才有逆矩阵。

  • 方阵,意味着行数和列数相等
  • 非奇异,意味着所有的列向量都是线性无关的,即满秩

矩阵的秩(rank)

在线性代数中,一个矩阵A 的列秩是A 的线性独立的纵列的极大数目。类似地,行秩是A 的线性无关的横行的极大数目,记做 r(A),rk(A),rank(A).
一个很有意思的概念,值得单写一篇.

阅读更多
换一批

没有更多推荐了,返回首页