2.第二把鑰匙:擬陣理論 |
擬陣理論最早溯源1930年,代數學家范德瓦登 (Van der Waedern) 在他的代數書上,將線性獨立和代數獨立的概念公設化,但真正將這件事情做得很徹底則是1935年惠特尼 (Whitney) 的一篇論文,他將圖網上的「沒有迴路」和代數中「獨立」的概念,共同熔於一爐,鍛就出擬陣這把金鑰。
這之後,伯考夫、馬克藍 (Mac Lane)、迪兒臥斯 (Dilwurth) 等人由束理論 (lattice theory) 及幾何觀點做了一些研究,雷多在組合學的應用上即無窮擬陣也有重要的成果。但真正將擬陣炒紅的應該是榻德 (Tutte) 在擬陣和網圖的研究,以及雷多在研究相異代表系時引進擬陣。自此之後,圖網論、擬陣和相異代表系的研究相結合,造成1960年代的淘金盛潮,納斯威廉 (Nash-Williams)、艾德模斯 (J. Edmonds)、佛兒克森 (Fulkerson)、布勞弟 (Brualdi)、彌兒斯基 (Mirsky)、婆費特 (Perfect) 等人,諸家紛起,創下輝煌的霸業。
所謂擬陣是一有序對 ,其中 S 是有限集合,是 S 的一個子集族,並且滿足下面三個公設。
- (I1) 。
- (I2) 若 ,則 。
- (I3) 若 且 |X|>|Y|,則存在 使得 。
的元素(是S的一個部分集合)稱為獨立集,仿照線性代數或圖網理論,我們也可以定義出相依、基底、序、生成集、迴路等等概念。
- 例 4: S 是矩陣 A的所有行 所成的集合, 是所有 S的線性獨立子集所成的集合,則 是一擬陣。
- 例 5: G=(V,E)是一圖網, V為其頂點集, E為邊集, 是所有 E不含迴路的子集所成集合族,則 是一擬陣。
-
例 6:是一集合族,,:對所有i恒有,則是一擬陣。這個擬陣和研究A的相異代表系有密切的關係。
文章出处:http://episte.math.ntu.edu.tw/articles/mm/mm_10_1_09/page2.html