擬陣理論


2.第二把鑰匙:擬陣理論

擬陣理論最早溯源1930年,代數學家范德瓦登 (Van der Waedern) 在他的代數書上,將線性獨立和代數獨立的概念公設化,但真正將這件事情做得很徹底則是1935年惠特尼 (Whitney) 的一篇論文,他將圖網上的「沒有迴路」和代數中「獨立」的概念,共同熔於一爐,鍛就出擬陣這把金鑰。

這之後,伯考夫、馬克藍 (Mac Lane)、迪兒臥斯 (Dilwurth) 等人由束理論 (lattice theory) 及幾何觀點做了一些研究,雷多在組合學的應用上即無窮擬陣也有重要的成果。但真正將擬陣炒紅的應該是榻德 (Tutte) 在擬陣和網圖的研究,以及雷多在研究相異代表系時引進擬陣。自此之後,圖網論、擬陣和相異代表系的研究相結合,造成1960年代的淘金盛潮,納斯威廉 (Nash-Williams)、艾德模斯 (J. Edmonds)、佛兒克森 (Fulkerson)、布勞弟 (Brualdi)、彌兒斯基 (Mirsky)、婆費特 (Perfect) 等人,諸家紛起,創下輝煌的霸業。

所謂擬陣是一有序對 $M=(S,\vartheta)$,其中 S 是有限集合,$\vartheta$S 的一個子集族,並且滿足下面三個公設。


(I1) $\phi\in \vartheta$

(I2) 若 $X\subseteq Y\in \vartheta$,則 $X\in \vartheta$

(I3) 若 $X,Y\in \vartheta$|X|>|Y|,則存在 $x\in X\setminus Y$ 使得 $Y\bigcup \{x\}\in \vartheta$

$\vartheta$的元素(是S的一個部分集合)稱為獨立集,仿照線性代數或圖網理論,我們也可以定義出相依、基底、序、生成集、迴路$\cdots\cdots$等等概念。


例 4: S 是矩陣 A的所有行 $A_1,\cdots\cdots,A_n$所成的集合, $\vartheta$是所有 S的線性獨立子集所成的集合,則 $(S,\vartheta)$是一擬陣。

例 5: G=(V,E)是一圖網, V為其頂點集, E為邊集, $\vartheta$是所有 E不含迴路的子集所成集合族,則 $(E,\vartheta)$是一擬陣。

例 6:$A_1=(A_1,\cdots\cdots,A_n)$是一集合族,$S=A_1\bigcup\cdots\cdots \bigcup A_n$,$\vartheta=\{ X\subseteq S$:對所有i恒有$\vert X\bigcap A_i\vert\leq 1 \}$,則$(S,\vartheta)$是一擬陣。這個擬陣和研究A的相異代表系有密切的關係。



文章出处:http://episte.math.ntu.edu.tw/articles/mm/mm_10_1_09/page2.html



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值