提升GAN训练效果的一些Tips
训练GAN的一些Tips用以解决GAN出现的模型坍塌和初始化方面的问题1.特征匹配GAN不稳定的特点可以通过给生成器一个新的训练目标来解决,这种方式可以避免生成器过度拟合当前的判别器。通过使用判别器中间层的特征来匹配图像的真伪,并将其作为监督信号来训练生成器。在这种方式下,训练产生的生成器的生成数据会尽可能匹配真实数据的统计特性以及判别器的中间层的预期特征值。这样,在判别器的训练过程中,我们让判别器去寻找那些最能很好滴判别真实数据的特征而不是由当前模型生成数据的特征。2.小批量通过给判别器加入一些




