该题目转自二当家的掌柜,链接为https://blog.csdn.net/github_39261590/article/details/73864039。感谢大神。
原题:
Description:
Count the number of prime numbers less than a non-negative number, n.
解题思路:
常规解法:
因为要求解小于n的素数个数,首先要解决如何判断一个素数。那么就是对于一个数x,只需对[2,]的数进行整除,若能整除则不是素数,不能整除则为素数。然后判断小于n的各个数是否为素数,这样做法的复杂度显然为O(n^2),在LeetCode中肯定TLE。
1 def countPrimes(n): 2 import math 3 4 count=0 5 6 def judge_prime(w): 7 sqrt_w=int(math.sqrt(w)) 8 for i in xrange(2,sqrt_w+1): 9 10 if x%i==0: 11 return 0 12 return 1 13 14 for x in xrange(2,n): 15 16 count=count+judge_prime(x) 17 18 19 20 return count
解法二:厄拉多塞筛法
没办法了我就去Google了一下,于是知道了厄拉多塞筛法:
西元前250年,希腊数学家厄拉多塞(Eeatosthese)想到了一个非常美妙的质数筛法,减少了逐一检查每个数的的步骤,可以比较简单的从一大堆数字之中,筛选出质数来,这方法被称作厄拉多塞筛法(Sieve of Eeatosthese)。
具体操作:先将 2~n 的各个数放入表中,然后在2的上面画一个圆圈,然后划去2的其他倍数;第一个既未画圈又没有被划去的数是3,将它画圈,再划去3的其他倍数;现在既未画圈又没有被划去的第一个数 是5,将它画圈,并划去5的其他倍数……依次类推,一直到所有小于或等于 n 的各数都画了圈或划去为止。这时,表中画了圈的以及未划去的那些数正好就是小于 n 的素数。
其实,当你要画圈的素数的平方大于 n 时,那么后面没有划去的数都是素数,就不用继续判了。如下图:
python改进版:
从上面的厄拉多塞筛法可以看出,我们只需遍历[2,],因为超过部分如果不是素数,则作为因子在前面的数已经被删除了。同时这里利用了python里list的特性[::i]取i的倍数。
1 def countPrimes(self, n): 2 if n < 3: 3 return 0 4 primes = [True] * n 5 primes[0] = primes[1] = False 6 for i in range(2, int(n ** 0.5) + 1): 7 if primes[i]: 8 primes[i * i: n: i] = [False] * len(primes[i * i: n: i]) 9 return sum(primes)