把荷花照片调成古典工笔画的PS方法

本篇教程把数码拍摄的荷花照片制作成中国风的效果,整个教程相当简单,但是比较出效果,其实这类教程素材是不限的,我们教程里用到了荷花的照片,是荷花更有禅意,制作出来比较符合中国风的感觉,同学们可以拓展一下,看看换个素材,说不定效果也很棒,在背景的选择上我们选了一一块牛皮纸作为素材,两张图片叠加,再搭配一些文字,整个就完成了,刚接触PS的同学们也可以试着来制作一下。

IT有什么不懂可加群问:741090028,暗号:小螺号

效果图:
在这里插入图片描述
原图:
在这里插入图片描述
我们以下图为例
在这里插入图片描述
一,首先将照片导入Lr
在这里插入图片描述
二,接着在Lr里面调色,为了背景更加干净

所以适当提了一点曝光,其他参数如下
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Ps:在这里我把亮度和对比度调得稍高(为了接下来的操作)

在Lr调色后对比图如下
在这里插入图片描述
三,将照片导入ps
在这里插入图片描述
四,利用仿制图章工具去除天空的杂色,

并且适当裁剪使得背景留白更宽
在这里插入图片描述
在这里插入图片描述
五,将1用移动工具拉入2,用自由变换工具拉到合适大小

并且久变其不透明度(这里是70%)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
ps:在这里就知道为什么要在第二步中拉高亮度和对比度(突出画面主体)

六,在照片中插入文字与印章,最后适当锐化,就ok了

完成:
在这里插入图片描述
一起来制作一下吧,相信你会做的更好,并且从中学到一些知识,其实在学PS的路上越是简单的教程越有效果,同学们在制作的时候,也更有成就感。

内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深度学习模型,结合GUI界面实现智能化预测与可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制与LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维度评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精度与鲁棒性。同时集成注意力权重与LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据载、模型热插拔推理与预测结果动态展示。; 适合人群:具备一定Python编程基础和深度学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精度动态预测,支持智能运维与故障预警;③为科研人员提供可复现、可扩展的深度学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码与文档逐步实践,重点关注数据预处理、模型结构设计与GUI集成部分,尝试在本地环境中运行并调试程序,深入理解Transformer与LSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值