题意:给定一个n (1 <= n <= 10^16),求小于等于n的最大反素数。反素数(对于任何正整数x,起约数的个数记做g(x).例如g(1)=1,g(6)=4.
如果某个正整数x满足:对于任意i(0<i<x),都有g(i)<g(x),则称x为反素数.)。
思路:即求小于等于n的约数最多的数,因为一个数的因子数等于它所有素因子幂加1的乘积,要求最大的反素数,则素因子尽可能要少,幂尽可能要多,所以只对前15个素数所能组成的数进行遍历即可。
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1562
View Code
1 #include <cstdio> 2 #include <cmath> 3 #include <cstdlib> 4 #include <cstring> 5 #include <string> 6 #include <algorithm> 7 #include <iostream> 8 using namespace std; 9 #define LL long long 10 11 int prime[15]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}; 12 LL n,Max,ans; 13 14 void dfs(LL sum,LL num,int k,int t){ 15 if(sum>Max) {Max=sum; ans=num;} 16 if(sum==Max&&num<ans) ans=num; 17 if(k>14) return ; 18 LL temp=num; 19 for(int i=1;i<=t;i++){ 20 if(temp*prime[k]>n) break; 21 temp*=prime[k]; 22 dfs(sum*(i+1),temp,k+1,i); 23 } 24 } 25 26 int main(){ 27 28 // freopen("data.in","r",stdin); 29 // freopen("data.out","w",stdout); 30 31 while(scanf("%lld",&n)!=EOF){ 32 Max=0;ans=n; 33 dfs(1,1,0,50); 34 printf("%lld\n",ans); 35 } 36 return 0; 37 }