banglu2731
码龄9年
关注
提问 私信
  • 博客:18,919
    18,919
    总访问量
  • 暂无
    原创
  • 468,381
    排名
  • 3
    粉丝
  • 0
    铁粉
  • 加入CSDN时间: 2016-03-28
博客简介:

banglu2731的博客

查看详细资料
个人成就
  • 获得2次点赞
  • 内容获得0次评论
  • 获得13次收藏
创作历程
  • 3篇
    2019年
  • 112篇
    2018年
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

351人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

MIT 18.06 linear algebra lecture 14 正交向量和子空间 笔记

本节主要提到向量、基以及子空间正交(orthogonal)的概念,符号是\(\perp\)。矩阵的行空间和零空间是正交的,列空间和左零空间是正交的。正交向量正交和另一个以往熟知的词——垂直(perpendicular)是等价的,如果两个向量之间的角是\(90^{\circ}\),则两个向量是正交的。如果两向量是正交的,两向量之和构成斜边,构成一个直角三角形。可以利用毕达哥拉斯定理证...
转载
发布博客 2018.12.10 ·
249 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MIT 18.06 linear algebra lecture 16 投影矩阵和最小二乘 笔记

投影上一节提到投影矩阵\(P=A(A^TA)^{-1}A^T\)能将\(\boldsymbol{b}\)投影到\(A\)的列空间上。如果\(\boldsymbol{b}\)垂直于列空间,则\(\boldsymbol{b}\)在左零空间\(N(A^T)\)中,并且\(P\boldsymbol{b}=\boldsymbol{0}\);如果\(\boldsymbol{b}\)在列空间中,则\...
转载
发布博客 2018.12.12 ·
179 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MIT 18.06 linear algebra lecture 10 四个基本子空间 笔记

本节主要讨论矩阵相关的四个基本子空间和它们之间的关系。四个子空间任何一个\(m\times n\)的矩阵\(A\)能确定四个子空间(可能仅仅包含零向量)。列空间 \(C(A)\)列空间由\(A\)的列向量的所有线性组合组成,是\(\mathbb{R}^m\)中的向量空间。零空间 \(N(A)\)\(A\)的零空间由\(A\boldsymbol{x}=\boldsymbol{0...
转载
发布博客 2018.12.03 ·
180 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

markdown中在矩阵运算上方增加矩阵名称

在矩阵上面标记出矩阵的名称,实际上是把这些矩阵的名称也当作矩阵内的元素,下面的矩阵和运算符等也是作为最外层矩阵的元素。示例如下,亲测博客园markdown编辑器和印象笔记有效。$$\begin{matrix} A & B & & C\\ \left[\begin{array}{rr} 1 & 0 \\ ...
转载
发布博客 2018.11.28 ·
595 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MIT 18.06 linear algebra lecture 5 转置-置换-向量空间 笔记

置换矩阵乘以置换矩阵\(p\)后,能够交换行,应用消元法时,通过置换矩阵移走主元为\(0\)的行。之前\(A\)的\(LU\)分解时,假设不需要交换行,实际情况可能会碰到需要交换行的情况,因此\(A=LU\)变为\(PA=LU\),其中\(P\)是一个置换矩阵,用来对\(A\)的行重新排序,需要记住的是\(P^{-1}=P^T\),\(PP^T=I\)。转置求矩阵的转置时,行变成列...
转载
发布博客 2018.11.28 ·
174 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

markdown渲染增广矩阵及矩阵内元素对齐

最近学习MIT线代做笔记时顺便掌握了如何在markdown渲染增广矩阵,顺带还能选择不同的方式对齐矩阵内的元素。直接给出例子,亲测在博客园编辑器(mathjax)和印象笔记中均有效(katex):$$\left[\begin{array}{lcr|r} -1 & 2 & 1 & 2\\ 3 & 18 & 1 & 12\...
转载
发布博客 2018.11.27 ·
1184 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

MIT 18.06 linear algebra lecture 3 矩阵乘法和逆矩阵 笔记

矩阵乘法下面讨论四种不同的矩阵乘法思路。以两个矩阵的乘法为例,\(AB=C\)。其中\(A\)是\(m\times n\)矩阵,\(B\)是\(n\times p\)矩阵,\(C\)是\(m\times p\)矩阵,\(c_{ij}\)是矩阵\(C\)中第\(i\)行第\(j\)列的元素。标准乘法(行乘以列)标准乘法中,\(A\)的第\(i\)行和\(B\)的第\(j\)列的点积...
转载
发布博客 2018.11.27 ·
203 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MIT 18.06 linear algebra lecture 1 方程组的几何解释 笔记

线性代数的基本问题是解方程组:\[\begin{aligned}2x-y &= 0 \\-x+2y &= 3\end{aligned}\]从几何的角度,可以从行图像、列图像两个角度解决方程组row picture在例子中方程组的每个等式,是二维空间内的一条直线,显然两个等式所代表直线的交点,便是该方程组的解。column picture从列图像的角...
转载
发布博客 2018.11.23 ·
156 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

231. 2的幂

给定一个整数,编写一个函数来判断它是否是 2 的幂次方。示例 1:输入: 1输出: true解释: 20 = 1示例 2:输入: 16输出: true解释: 24 = 16示例 3:输入: 218输出: false解法:转化为二进制字符串,只有一个1的即是2的幂次方class Solution: def isPowerOfTwo(self, n): ...
转载
发布博客 2018.10.29 ·
90 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

理解条件概率的链式法则

条件概率:\(\text{x}=x\) 事件发生时 \(\text{y}=y\) 事件发生的概率:\[P(\text{y}=y|\text{x}=x)=\frac{P(\text{x}=x,\text{y}=y)}{P(\text{x}=x)}\]条件概率的链式法则也称为条件概率的乘法法则\[\begin{aligned}P(a,b,c) &= P(a|b,...
转载
发布博客 2019.06.01 ·
3247 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

ubuntu 16.04 通过nvm安装nodejs和npm(淘宝镜像加速)

nvm(node)用于管理nodejs的不同版本。本文主要包括:nvm安装使用淘宝镜像加速nvm使用淘宝镜像加速npm安装用于编译源码的工具$ sudo apt-get update$ sudo apt-get install build-essential libssl-dev获取并编译nvm从项目github地址获取nvm安装脚本$ curl -sL htt...
转载
发布博客 2018.10.22 ·
487 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

MIT 18.06 linear algebra lecture 15 子空间投影 笔记

投影如果有一向量\(\boldsymbol{b}\)和向量\(\boldsymbol{a}\)所在的直线,该直线上哪一点离\(\boldsymbol{b}\)最近?由上图可以看到,经过\(\boldsymbol{b}\)且与\(a\)所正交的直线和\(\boldsymbol{a}\)所在直线的交点\(\boldsymbol{p}\)即是满足上述条件的点。如果将\(\boldsymb...
转载
发布博客 2018.12.12 ·
159 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MIT 18.06 linear algebra lecture 13 复习一 笔记

问题1假设\(\boldsymbol{u}\)、\(\boldsymbol{v}\)和\(\boldsymbol{w}\)是\(\mathbb{R}^7\)中的非零向量。他们生成了\(\mathbb{R}^7\)中的子空间,该子空间的维度可能是多少?答案:\(1\)、\(2\) 和 \(3\)都可能是答案,子空间维度不可能更高,因此该子空间的基至多为三个向量。\(0\) 不可能是答案...
转载
发布博客 2018.12.10 ·
138 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

设计循环队列

设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。你的实现应该支持如下操作:MyC...
转载
发布博客 2018.09.27 ·
150 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MIT 18.06 linear algebra lecture 12 图和网络 笔记

借助矩阵和向量这些线性代数中的工具,能够使我们更好地理解其它科学中的系统。例如化学家通常使用行向量化简更好地理解哪些元素参与了复杂的化学反应。本节课中将探讨线性代数在电路中的应用。图和网络图(graph)是一些由边连接的节点的集合。下图展示了一幅小图的节点数\(n=4\),边数\(m=5\):在图中的边上添上箭头,代表通过当前边的电流方向。关联矩阵下面关联矩阵(incide...
转载
发布博客 2018.12.07 ·
161 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

671. 二叉树中第二小的节点

给定一个非空特殊的二叉树,每个节点都是正数,并且每个节点的子节点数量只能为 2 或 0。如果一个节点有两个子节点的话,那么这个节点的值不大于它的子节点的值。给出这样的一个二叉树,你需要输出所有节点中的第二小的值。如果第二小的值不存在的话,输出 -1 。示例 1:输入: 2 / \ 2 5 / \ 5 7输出: 5说明: 最小的值是...
转载
发布博客 2018.09.25 ·
78 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MIT 18.06 linear algebra lecture 11 矩阵空间 秩一矩阵 小世界图 笔记

新向量空间之前讨论了很多关于\(\mathbb{R}^n\)中的向量,接下来讨论任意满足向量加法和数乘的“向量”的向量空间\(3\times 3\) 矩阵上一节提到了所有\(3\times 3\)矩阵组成的空间\(M\)和其中一些子空间:所有\(3\times 3\)的对称矩阵\(S\);所有\(3\times 3\)的上三角矩阵\(U\);前两者的交集\(D\)——所有\(3\t...
转载
发布博客 2018.12.04 ·
221 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

606. 根据二叉树创建字符串

你需要采用前序遍历的方式,将一个二叉树转换成一个由括号和整数组成的字符串。空节点则用一对空括号 "()" 表示。而且你需要省略所有不影响字符串与原始二叉树之间的一对一映射关系的空括号对。示例 1:输入: 二叉树: [1,2,3,4] 1 / \ 2 3 / 4 输出: "1(2(4))(3)"解释: 原本...
转载
发布博客 2018.09.25 ·
80 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MIT 18.06 linear algebra lecture 8 求解Ax=b 可解性和解的结构 笔记

本节主要重点是,什么条件下\(A\boldsymbol{x}=\boldsymbol{b}\)有解?如何去描述这些解?关于\(\boldsymbol{b}\)的可解条件继续使用上一节的例子:\[A=\left[\begin{array}{rrrr} 1 & 2 & 2 & 2\\ 2 & 4 & 6 & 8\\ ...
转载
发布博客 2018.11.30 ·
148 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

653. 两数之和 IV - 输入 BST

给定一个二叉搜索树和一个目标结果,如果 BST 中存在两个元素且它们的和等于给定的目标结果,则返回 true。**案例 1:*输入: 5 / \ 3 6 / \ \2 4 7Target = 9输出: True案例 2:输入: 5 / \ 3 6 / \ \2 4 7Target = 28...
转载
发布博客 2018.09.25 ·
106 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多