MIT 18.06 linear algebra lecture 3 矩阵乘法和逆矩阵 笔记

矩阵乘法

下面讨论四种不同的矩阵乘法思路。
以两个矩阵的乘法为例,\(AB=C\)。其中\(A\)\(m\times n\)矩阵,\(B\)\(n\times p\)矩阵,\(C\)\(m\times p\)矩阵,\(c_{ij}\)是矩阵\(C\)中第\(i\)行第\(j\)列的元素。

标准乘法(行乘以列)

标准乘法中,\(A\)的第\(i\)行和\(B\)的第\(j\)列的点积即是\(C\)中的\(c_{ij}\)
\[ c_{ij}=\sum_{k=1}^n a_{ik}b_{kj} \]

列乘法

\(A\)(矩阵)与\(B\)的第\(j\)列(列向量)的乘积是\(C\)的第\(j\)列,\(C\)的列是\(A\)的列的线性组合。

行乘法

\(A\)的第\(i\)行(行向量)与\(B\)(矩阵)的乘积是\(C\)的第\(i\)行,\(C\)的行是\(B\)的行的线性组合。

列乘以行

\(A\)的列是\(m\times 1\)向量,\(B\)的行是\(1\times p\)向量,两者乘积是一个矩阵:
\[ \begin{bmatrix} 2\\ 3\\ 4 \end{bmatrix} \begin{bmatrix} 1 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 12\\ 3 & 18\\ 4 & 24 \end{bmatrix} \]

该矩阵的列是以\(A\)的列和\(B\)的行相乘得到,如果将行向量\((2,12)\)\((3,18)\)\((4,12)\)看作是二维坐标系内的点,这些点在同一条直线上,对于两个列向量也是。后面将会学习到该矩阵的行空间(row space)是一条直线,列空间(column space)也是。

\(A\)\(B\)的乘积是所有"列乘以行"的矩阵之和:
\[ AB=\sum_{k=1}^n \begin{bmatrix} a_{1k} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{k1} & \cdots & b_{kp} \end{bmatrix} \]

\(A\)\(B\)合理划分,能够将\(AB=C\)按块相乘:
\[ \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} = \begin{bmatrix} C_1 & C_2 \\ C_3 & C_4 \end{bmatrix} \]

其中,\(C_1=A_1B_1+A_2B_3\)

逆矩阵

方阵

如果矩阵\(A\)是一个方阵,该矩阵最重要的性质即是否存在逆矩阵\(A^{-1}\)。如果存在,则\(A^{-1}A=I=AA^{-1}\),矩阵\(A\)是可逆的(invertible),而且是非奇异的(nonsingular)。
如果\(A\)是奇异的,\(A\)没有逆矩阵,其行列式(determinant)为\(0\),并且能够找到某些非零向量\(\boldsymbol x\)使得\(A\boldsymbol x=0\)。例如:
\[ \begin{bmatrix} 1 & 3 \\ 2 & 6 \\ \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \end{bmatrix} \]
上面的例子中,两个列向量在同一直线上。
寻找矩阵的逆矩阵与解决线性方程有重要的关系:
\[ \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
上面的式子可以解读为\(A\)乘以\(A^{-1}\)的第\(j\)列等于单位矩阵的第\(j\)列,是\(A\boldsymbol x=\boldsymbol b\)的特殊形式。

高斯-约尔当(Gauss-Jordan)消元法

前面提到的消元法可以同时解多个线性方程,在参数矩阵右边增加整个单位矩阵\(I\)
\[ \left[\begin{array}{rr|rr} 1 & 3 & 1 & 0 \\ 2 & 7 & 0 & 1 \end{array}\right] \rightarrow \left[\begin{array}{rr|rr} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{array}\right] \rightarrow \left[\begin{array}{rr|rr} 1 & 0 & 7 & -3 \\ 0 & 1 & -2 & 1 \end{array}\right] \]
当使用高斯消元法将原始矩阵转换为上三角矩阵后,使用约尔当思想去消去矩阵上三角右边部分的元素,从而得到逆矩阵:
\[ A^{-1}= \left[\begin{array}{rr} 7 & -3 \\ -2 & 1 \end{array}\right] \]
上一讲中提到通过一系列\(E_{ij}\)完成矩阵\(A\)的消元,假设\(E\)是这些消元矩阵之积,可以从分块角度考虑高斯约尔当求解逆矩阵的思路:\(E[A|I]=[I|E]\),由于\(EA=I\),所以\(E=A^{-1}\)
---
笔记来源:MIT 18.06 lecture 3

转载于:https://www.cnblogs.com/yuyin/articles/10028366.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值