9.9 神圣之战

题意

给定一个无向图,求一个边集\(E\),删掉这个边集中的任意一条边,都可以使原无向图成为一个二分图

输出这个边集的大小以及这个边集中所有边的编号的异或和

解法

首先丢出两个结论:

  • 二分图中不存在奇环(这应该是众所周知的吧)

  • 构建出一个无向图的生成树,非树边一定是返祖边

    证明:设边\((u,v),depth(u)≤depth(v)\),假如\(u\)不是\(v\)的祖先,那么\(v\)必然会\(dfs\)\(u\)使得\(u\)\(v\)的儿子,便与\(depth(u)≤depth(v)\)矛盾

如果删掉一条边后形成的图是二分图,那么它一定不存在任意一个奇环

那么我们删掉的边一定是该图中所有奇环的并

删掉这条边就相当于摧毁了所有奇环

所以如果有两个或以上不相交的奇环,那么一定无解

但是我们发现如果仅仅这样进行判断还不够

如果有一条边是一个奇环和一个偶环的并,那么删掉这条边后原来的奇环与偶环会相连形成一个大奇环

这样的边显然也是不合要求的

那么现在考虑怎么做

首先\(dfs\)造出一颗生成树,我们能发现,每个环一定会包含一个返祖边

那么我们对每个返祖边进行答案的计算

用树上差分标记每条边被某个奇环\(/\)偶环覆盖了几次,并顺便求出奇环的个数\(cnt\)

统计答案时,如果一条边被覆盖了\(cnt\)次并且没有被任意一个偶环覆盖,那么它一定是答案

上面这样做的前提是我们的奇环个数\(>1\)

因为如果奇环个数大于\(1\),返祖边便不可能是答案

但如果我们只有一个奇环,返祖边理所当然的也应该是答案的一部分

所以我们标记一个返祖边,\(cnt=1\)的时候分类讨论即可

代码

#include <cstdio>
#include <vector>

using namespace std;

const int N = 1e6 + 10;

int n, m, cnt, spe;
int vis[N], fa[N], up[N], dep[N];

int f[N], g[N];

vector<int> vec[N], id[N];

inline void add(int x, int y, int ID) {
    vec[x].push_back(y), vec[y].push_back(x);
    id[x].push_back(ID), id[y].push_back(ID);
}

void DFS(int x) {
    // printf("dfn: %d\n", x);
    vis[x] = 1, dep[x] = dep[fa[x]] + 1;
    int sz = vec[x].size();
    for (int i = 0; i < sz; ++i) {
        int to = vec[x][i];
        if (vis[to])    continue;
        fa[to] = x, up[to] = id[x][i];
        DFS(to);
    }
}

void DFS2(int x) {
    // printf("dfn: %d\n", x);
    int sz = vec[x].size();
    for (int i = 0; i < sz; ++i) {
        int to = vec[x][i];
        if (fa[x] == to)    continue;
        if (fa[to] == x)    
            DFS2(to);
        else if (dep[to] < dep[x]) {
            if ((dep[x] - dep[to]) & 1) {
                g[x]++, g[to]--;
                // printf("even ring: %d %d\n", x, to);
            } else {
                ++cnt, spe = id[x][i];
                f[x]++, f[to]--;
                // printf("odd ring: %d %d\n", x, to);
            }
        }
    }
}

void DFS3(int x) {
    // printf("dfn: %d\n", x);
    // printf("f[%d]: %d \n", x, f[x]);
    int sz = vec[x].size();
    for (int i = 0; i < sz; ++i) {
        int to = vec[x][i];
        if (fa[to] == x) {
            DFS3(to);
            f[x] += f[to], g[x] += g[to];
        }
    }
    
}

void solve() {
    // printf("cnt: %d\n", cnt);
    int ans = 0, res = 0;
    if (!cnt) {
        for (int i = 1; i <= m; ++i)    res ^= i;
        printf("%d\n%d\n", m, res);
    }
    if (cnt == 1) {
        res = spe, ans = 1;
        for (int i = 1; i <= n; ++i)
            if (f[i] == 1 && !g[i]) 
                res ^= up[i], ++ans;
        printf("%d\n%d\n", ans, res);
    }
    if (cnt > 1) {
        for (int i = 1; i <= n; ++i)
            if (f[i] == cnt && !g[i])
                res ^= up[i], ++ans;
        printf("%d\n%d\n", ans, res);
    }
}

int main() {

    scanf("%d%d", &n, &m);

    int x, y;
    for (int i = 1; i <= m; ++i) {
        scanf("%d%d", &x, &y);
        add(x, y, i);
    }

    for (int i = 1; i <= n; ++i)
        if (!vis[i])    DFS(i);

    for (int i = 1; i <= n; ++i)
        if (!fa[i])     DFS2(i);

    for (int i = 1; i <= n; ++i)
        if (!fa[i])     DFS3(i);

    solve();

    return 0;
}

转载于:https://www.cnblogs.com/VeniVidiVici/p/11509215.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值