HNOI2012 永无乡

题意

给定\(n\)个连通块,有两种操作:

  • 合并两个连通块
  • 查询某个元素所在连通块内第\(k\)大的值

解法

合并连通块\(\to\)启发式合并,查询第\(k\)\(\to\)平衡树,权值线段树

当然这道题可以用线段树合并写,但是用FHQ_Treap来写实在是太爽了

由于FHQ_Treap本身就可以维护连通块(一颗树就是一个连通块),还能顺带维护连通块的size与其中的元素,简直是为这道题量身定制的

对于合并两个连通块的操作,我们遍历较小的那个连通块,将其中的元素一个个加进大连通块中,并把合并以后得到的根在并查集中设为原来连通块根的祖先

代码

#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

const int N = 1e5 + 10;

int read();

int n, m;

int fa[N], mp[N];

char op[10];

struct FHQ_Treap {
#define ls(x) t[x].ch[0]
#define rs(x) t[x].ch[1]

    int cnt;
    int a, b;
    
    struct node {
        int val, rnd, siz;
        int ch[2];
        node() { ch[0] = ch[1] = 0; }   
    } t[N];
    
    FHQ_Treap() : cnt(0) {}
    
    void update(int x) {
        t[x].siz = t[ls(x)].siz + t[rs(x)].siz + 1; 
    }
    
    int newnode(int v) {
        ++cnt;
        t[cnt].val = v, t[cnt].rnd = rand() << 15 | rand(), t[cnt].siz = 1;
        return cnt; 
    }
    
    void split(int x, int k, int& lt, int& rt) {
        if (!x)
            return lt = rt = 0, void();
        if (t[x].val <= k)
            lt = x, split(rs(x), k, rs(x), rt);
        else
            rt = x, split(ls(x), k, lt, ls(x));
        update(x);
    }
    
    int merge(int x, int y) {
        if (!x || !y)
            return x | y;
        if (t[x].rnd < t[y].rnd) {
            rs(x) = merge(rs(x), y); 
            return update(x), x;
        } else {
            ls(y) = merge(x, ls(y));    
            return update(y), y;
        }
    }
    
    int kth(int x, int k) {
        if (k > t[x].siz)  return 0;
        int p = x;  
        while (true) {
            if (k <= t[ls(p)].siz)  p = ls(p);
            else if (k == t[ls(p)].siz + 1)  return t[p].val;
            else k -= t[ls(p)].siz + 1, p = rs(p);
        }
    }
    
    int insert(int x, int y) {
        split(y, t[x].val, a, b);
        return merge(merge(a, x), b);
    }
    
    void DFS(int x, int& y) {
        if (ls(x))  DFS(ls(x), y);
        if (rs(x))  DFS(rs(x), y);
        y = insert(x, y);
    }
    
    int combine(int x, int y) {
        DFS(x, y);
        return y;
    }
    
#undef ls
#undef rs   
} tr;

inline int get(int x) {
    return x == fa[x] ? x : fa[x] = get(fa[x]); 
}

void modify(int u, int v) {
    if (get(u) ^ get(v)) {
        u = fa[u], v = fa[v];
        if (tr.t[u].siz > tr.t[v].siz)  swap(u, v);
        int nr = tr.combine(u, v);
        fa[u] = fa[v] = fa[nr] = nr;
    }
}

int main() {
    
    srand(time(0));
    
    n = read(), m = read(); 
    
    mp[0] = -1;
    for (int i = 1; i <= n; ++i) {
        int v = read();
        fa[i] = mp[v] = i;
        tr.newnode(v);
    }
    
    for (int i = 1; i <= m; ++i)  modify(read(), read());
    
    int q = read();
    while (q--) {
        scanf("%s", op + 1);
        if (op[1] == 'B') {
            modify(read(), read());
        } else {
            int u = read(), k = read();
            printf("%d\n", mp[tr.kth(get(u), k)]);
        }
    }
    
    return 0;
}

int read() {
    int x = 0, c = getchar();
    while (c < '0' || c > '9')    c = getchar();
    while (c >= '0' && c <= '9')  x = x * 10 + c - 48, c = getchar();
    return x;   
}

转载于:https://www.cnblogs.com/VeniVidiVici/p/11586142.html

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值