题目:
Description
由于对Farmer John的领导感到极其不悦,奶牛们退出了农场,组建了奶牛议会。议会以“每头牛 都可以获得自己想要的”为原则,建立了下面的投票系统: M只到场的奶牛 (1 <= M <= 4000) 会给N个议案投票(1 <= N <= 1,000) 。每只 奶牛会对恰好两个议案 B_i and C_i (1 <= B_i <= N; 1 <= C_i <= N)投 出“是”或“否”(输入文件中的'Y'和'N')。他们的投票结果分别为VB_i (VB_i in {'Y', 'N'}) and VC_i (VC_i in {'Y', 'N'})。 最后,议案会以如下的方式决定:每只奶牛投出的两票中至少有一票和最终结果相符合。 例如Bessie给议案1投了赞成'Y',给议案2投了反对'N',那么在任何合法的议案通过 方案中,必须满足议案1必须是'Y'或者议案2必须是'N'(或者同时满足)。 给出每只奶牛的投票,你的工作是确定哪些议案可以通过,哪些不能。如果不存在这样一个方案, 输出"IMPOSSIBLE"。如果至少有一个解,输出: Y 如果在每个解中,这个议案都必须通过 N 如果在每个解中,这个议案都必须驳回 ? 如果有的解这个议案可以通过,有的解中这个议案会被驳回 考虑如下的投票集合: - - - - - 议案 - - - - - 1 2 3 奶牛 1 YES NO 奶牛 2 NO NO 奶牛 3 YES YES 奶牛 4 YES YES 下面是两个可能的解: * 议案 1 通过(满足奶牛1,3,4) * 议案 2 驳回(满足奶牛2) * 议案 3 可以通过也可以驳回(这就是有两个解的原因) 事实上,上面的问题也只有两个解。所以,输出的答案如下: YN?
Input
* 第1行:两个空格隔开的整数:N和M * 第2到M+1行:第i+1行描述第i只奶牛的投票方案:B_i, VB_i, C_i, VC_i
Output
* 第1行:一个含有N个字符的串,第i个字符要么是'Y'(第i个议案必须通过),或者是'N' (第i个议案必须驳回),或者是'?'。 如果无解,输出"IMPOSSIBLE"。
Sample Input
3 4
1 Y 2 N
1 N 2 N
1 Y 3 Y
1 Y 2 Y
Sample Output
YN?
HINT
Source
题解:
2-sat问题的模板题目,先说2-sat问题的基本解法:
一些问题可以转成布尔方程来求解····
我们的目的是将其布尔方程的每个文字拆开成两点,一点表示其本身,一点表示它的非,比如a就拆成a与┐a,并且将各种运算符号转化为只含有^(与)和->(A->B表示A为真则B为真)的形式,比如∨转化为┐a -> b ^ ┐b -> a ,a一定为真就转换为 ┐a->a 的形式,然后将->转换成边,两边连上对应的点。
如果a与┐a在最后建成的图的同一个强连通分量里···那么布尔方程有解
如果a所在强连通分量的拓扑序在┐a所在强连通分量的拓扑序之后,那么a为真,之前a为假,如果相等则真假均可以取。这里求拓扑序直接用tarjian即可,先找到的强连通分量的拓扑序一定更大
以上就是基本知识
但这道题有点特殊·····因为包含a拓扑序与┐a相等的情况要判断····用tarjian的话有点麻烦···
但n很小···直接dfs即可····若a可以到达┐a,则说明a可能与┐a在同一强连通分量或者a所在强连通分量的拓扑序小于等于┐a的拓扑序
代码:
#include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #include<ctime> #include<cctype> #include<cstring> #include<string> #include<algorithm> using namespace std; const int N=2005; const int M=10005; int first[N],next[M],go[M],tot=1,n,m; bool visit[N]; inline void comb(int a,int b) { next[++tot]=first[a],first[a]=tot,go[tot]=b; } inline int tran(int a) { return (a%2==1)?a+1:a-1; } inline int R() { char c; int f=0; for(c=getchar();c<'0'||c>'9';c=getchar()); for(;c<='9'&&c>='0';c=getchar()) f=(f<<3)+(f<<1)+c-'0'; return f; } inline void dfs(int u) { visit[u]=true; for(int e=first[u];e;e=next[e]) { if(!visit[go[e]]) dfs(go[e]); } } inline bool jud(int u) { memset(visit,false,sizeof(visit)); dfs(u); if(!visit[tran(u)]) return true; else return false; } int main() { //freopen("a.in","r",stdin); n=R(),m=R(); char s[5],t[5]; int a,b; for(int i=1;i<=m;i++) { scanf("%d%s%d%s",&a,s,&b,t); int t1,t2; if(s[0]=='Y') t1=a*2-1; else t1=a*2; if(t[0]=='Y') t2=b*2-1; else t2=b*2; comb(tran(t2),t1); comb(tran(t1),t2); } for(int i=1;i<=n;i++) { bool flag1=jud(i*2-1); bool flag2=jud(i*2); if(!flag1&&!flag2) {cout<<"IMPOSSIBLE"<<endl;return 0;} else if(!flag1) cout<<"N"; else if(!flag2) cout<<"Y"; else cout<<"?"; } return 0; }