刷题总结——探险(ssoj)

本文介绍了一种基于树形DP的算法,用于解决探险队在有限人数条件下,如何在连通的藏宝点中获取最大宝藏价值的问题。通过将多叉树转化为二叉树,并考虑人员分配和路径选择的细节,算法实现了对藏宝点价值的有效计算。
摘要由CSDN通过智能技术生成

题目:

国家探险队长 Jack 意外弄到了一份秦始皇的藏宝图,于是,探险队一行人便踏上寻宝之旅,去寻找传说中的宝藏。

藏宝点分布在森林的各处,每个点有一个值,表示藏宝的价值。它们之间由一些小路相连,小路不会形成环,即两个藏宝点之间有且仅有一条道路。探险队从其中的一点出发,每次他们可以留一个人在此点开采宝藏,也可以不留,然后其余的人可以分成若干队向这一点相邻的点走去。需要注意的是,如果他们把队伍分成两队或两队以上,就必须留一个人在当前点,提供联络和通讯,当然这个人也可以一边开采此地的宝藏。并且,为了节约时间,队伍在前往开采宝藏过程中是不会走回头路的。现在你作为队长的助理,根据已有的藏宝图,请计算探险队所能开采的最大宝藏价值。

注意:在整个过程中,每个人最多只能开采一个点的宝藏。

输入格式

第 1 行有 2 个整数 n 和 m。其中 n 表示藏宝点的个数(1≤n≤100),m 表示探险队的人数(1≤m≤100)。

第 2 行是 n 个不超过 100 的整数,分别表示 1 到 n 每个点的宝藏价值。

接下来 n-1 行,每行两个数,x 和 y(1≤x,y≤n,x≠y),表示藏宝点 x 与 y 之间有一条路,数据保证不会有重复的路出现。

假设一开始探险队在点 1 处。

输出格式

输出一个整数,表示探险队所能获得最大宝藏价值。

样例数据 1

输入  [复制]

5 3 
1 3 7 2 8 
1 2 
2 3 
1 4 
4 5

输出

16

备注

【数据范围】
对 40% 的输入数据 :1≤n≤30;m≤12。
对 100% 的输入数据 :1≤n≤100;m≤100。

题解:

  树形dp··多叉树转二叉树处理附加维分配问题···很像选课··不过注意dp的一些细节··

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<cctype>
#include<string>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int N=105;
int father[N],son[N],brother[N],f[N][N][2],first[N],next[N*2],go[N*2],tot,n,m,val[N];
inline int R()
{
  char c;int f=0;
  for(c=getchar();c<'0'||c>'9';c=getchar());
  for(;c<='9'&&c>='0';c=getchar())  f=(f<<3)+(f<<1)+c-'0';
  return f;
}
inline void comb(int a,int b)
{
  next[++tot]=first[a],first[a]=tot,go[tot]=b;
  next[++tot]=first[b],first[b]=tot,go[tot]=a;
}
inline void dfs(int u,int fa)
{
  for(int e=first[u];e;e=next[e])
  {
    int v=go[e];if(v==fa)  continue;
    father[v]=u;dfs(v,u);
  }
}
inline void dp(int u,int k,int t)
{
  if(f[u][k][t]!=-1)  return; 
  if(u==0||k==0)  {f[u][k][t]=0;return;}
  f[u][k][t]=0;
  if(t==1)  //只有父亲节点有人驻守才能分开 
  {
    for(int i=0;i<k;i++)   //该节点留一个人    
    {
      dp(son[u],i,1),dp(brother[u],k-i-1,1);f[u][k][t]=max(f[u][k][t],f[son[u]][i][1]+f[brother[u]][k-i-1][1]+val[u]);
    }
    for(int i=0;i<=k;i++)  //该节点不留人 
    {
      dp(son[u],i,0),dp(brother[u],k-i,1);f[u][k][t]=max(f[u][k][t],f[son[u]][i][0]+f[brother[u]][k-i][1]);
    }
  }
  else  //否则只能儿子节点走完或者兄弟节点走完 
  { 
    dp(son[u],k,0);dp(son[u],k-1,1);dp(brother[u],k,0);
    f[u][k][t]=max(f[u][k][t],max(f[son[u]][k][0],f[brother[u]][k][0]));
    f[u][k][t]=max(f[u][k][t],f[son[u]][k-1][1]+val[u]);
  }
  return;
}
int main()
{
  //freopen("a.in","r",stdin);
  memset(f,-1,sizeof(f));
  n=R(),m=R();int a,b;
  for(int i=1;i<=n;i++)  val[i]=R();
  for(int i=1;i<n;i++)  a=R(),b=R(),comb(a,b);
  dfs(1,0);for(int i=1;i<=n;i++)  brother[i]=son[father[i]],son[father[i]]=i;
  dp(son[0],m,0);
  cout<<f[son[0]][m][0]<<endl;
  return 0;
}

 

 

转载于:https://www.cnblogs.com/AseanA/p/7728742.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值