根据后序遍历和中序遍历的数组构建二叉树

这个问题的思路就是,通过后序遍历找到头结点,然后在中序遍历中划分子树, 再对子树执行相同的操作,直至子树为空。

而我之前的方法是在细节上比较粗(wu)暴(nao) 因此效率过于低下。

更详细的过程就是,根据后序遍历找到头结点,再在中序遍历中划分子树,而根据中序遍历中划分的子树大小,又可以作为偏移量来对后序遍历中的结点做划分。然后再对这一子树执行之前的操作。

我的代码是:

TreeNode* buildTree (vector<int> &inorder, vector<int> &postorder)
{
    if (inorder.empty ()) {
        return nullptr;
    }
    
    unordered_map<int, INTVECIT> inItDic;
    unordered_map<int, INTVECIT> postItDic;
    
    for (auto it = inorder.begin(); it != inorder.end(); ++it){
        inItDic[*it] = it;
    }
    
    for (auto it = postorder.begin(); it != postorder.end(); ++it){
        postItDic[*it] = it;
    }
    
    auto rootVal      = postorder.back ();
    auto root         = new TreeNode (rootVal);
    auto rootIt = inItDic[rootVal];
    
    function<void(TreeNode*, INTVECIT, INTVECIT)> build;
    build = [&] (TreeNode *subRoot, INTVECIT begin, INTVECIT end)
    {
        if (begin == end) {
            return;
        }
        
        set<INTVECIT> weights;
        for (auto it = begin; it != end; ++it) {
            weights.insert (postItDic[*it]);
        }
        auto newSubRootVal = **weights.crbegin ();
        auto newSubRoot = new TreeNode (newSubRootVal);
        
        if (newSubRootVal < subRoot->val) {
            subRoot->left = newSubRoot;
        }
        else {
            subRoot->right = newSubRoot;
        }
        
        auto newSubRootIt = inItDic[newSubRootVal];
        build (newSubRoot, begin, newSubRootIt);
        build (newSubRoot, newSubRootIt + 1, end);
    };
    
    build (root, inorder.begin(), rootIt);
    build (root, rootIt + 1, inorder.end());
    
    return root;
}

 运行时间多久? 2.67s 我可是自认挺好了, 毕竟我刚写好代码的时候可是运行了 20s+ 

可是 leetcode 并不认同,我就崩溃了,卧槽这都超时?两秒半也超时? 你特么在逗我!

直到在知乎上,一位好心前辈给了我一个解答,还就在我的代码基础上改的:

TreeNode* buildTree (vector<int> &inorder, vector<int> &postorder)
{
    using IndexType = vector<int>::size_type;
    if (inorder.empty () || postorder.empty() || inorder.size() != postorder.size()) {
        return nullptr;
    }
    
    unordered_map<int, int> inIndexDic;
    
    for (auto i = 0; i < inorder.size(); ++i) {
        inIndexDic[inorder[i]] = i;
    }
    
    function<TreeNode*(IndexType, IndexType, IndexType, IndexType)> build;
    build = [&] (IndexType inBegin, IndexType inEnd, IndexType postBegin, IndexType postEnd) -> TreeNode*
    {
        if (inBegin == inEnd) {
            return nullptr;
        }
        
        IndexType newRootIndex = inIndexDic[postorder[postEnd - 1]];
        IndexType leftSize = newRootIndex - inBegin;
        IndexType rightSize = inEnd - newRootIndex - 1;
        
        auto newRoot = new TreeNode(inorder[newRootIndex]);
        newRoot->left = build(inBegin, newRootIndex, postBegin, postBegin + leftSize);
        newRoot->right = build(newRootIndex + 1, inEnd, postBegin + leftSize, postBegin + leftSize + rightSize);
        return newRoot;
    };
    
    return build(0, inorder.size(), 0, postorder.size());
}

用了多少时间? 

0.002547s

我还是太年轻。

附:我再次重写的版本

 

TreeNode* buildTree(vector<int> &inorder, vector<int> &postorder){
    if (inorder.empty() || postorder.empty() || inorder.size() != postorder.size()){
        return nullptr;
    }
    
    using IndexType = vector<int>::size_type;
    
    unordered_map<int, IndexType> inIndexDic;
    auto inLength = inorder.size();
    
    for (decltype(inLength) i = 0; i < inLength; ++i){
        inIndexDic[inorder[i]] = i;
    }
    
    function<TreeNode*(IndexType, IndexType, IndexType, IndexType)> build;
    build = [&](IndexType inBegin, IndexType inEnd, IndexType postBegin, IndexType postEnd)->TreeNode*
    {
        if (inBegin == inEnd){
            return nullptr;
        }
        
        auto newRootIndex     = inIndexDic[postorder[postEnd -1]];
        auto newRoot          = new TreeNode(inorder[newRootIndex]);
        auto leftSubTreeSize  = newRootIndex - inBegin;
        auto rightSubTreeSize = inEnd - newRootIndex - 1;
        
        newRoot->left         = build(inBegin, newRootIndex, postBegin,
                                      postBegin + leftSubTreeSize);
        
        newRoot->right        = build(newRootIndex + 1, inEnd,
                                      postBegin + leftSubTreeSize,
                                      postBegin + leftSubTreeSize
                                                + rightSubTreeSize);
        return newRoot;
    };
    
    return build(0, inLength, 0, postorder.size());
}

 

 

 

转载于:https://www.cnblogs.com/wuOverflow/p/4674283.html

您好!您可以使用后序遍历中序遍历构建一棵二叉树。下面是一个示例代码,可以帮助您理解: ```c #include <stdio.h> #include <stdlib.h> // 二叉树的结点定义 struct Node { int data; struct Node* left; struct Node* right; }; // 根据后序遍历数组中序遍历数组构建二叉树 struct Node* buildTree(int inOrder[], int postOrder[], int inStart, int inEnd, int* postIndex) { // 如果中序遍历的起始位置大于结束位置,表示没有结点可以构建 if (inStart > inEnd) { return NULL; } // 创建新的结点,并将当前后序遍历的元素赋值给它 struct Node* newNode = (struct Node*)malloc(sizeof(struct Node)); newNode->data = postOrder[*postIndex]; (*postIndex)--; // 如果中序遍历的起始位置等于结束位置,表示已经到达叶子结点 if (inStart == inEnd) { newNode->left = NULL; newNode->right = NULL; return newNode; } // 在中序遍历数组中找到当前结点的位置 int inIndex; for (int i = inStart; i <= inEnd; i++) { if (inOrder[i] == newNode->data) { inIndex = i; break; } } // 根据当前结点的位置,递归构建左右子树 newNode->right = buildTree(inOrder, postOrder, inIndex + 1, inEnd, postIndex); newNode->left = buildTree(inOrder, postOrder, inStart, inIndex - 1, postIndex); return newNode; } // 后序遍历二叉树 void postOrderTraversal(struct Node* root) { if (root == NULL) { return; } postOrderTraversal(root->left); postOrderTraversal(root->right); printf("%d ", root->data); } int main() { int inOrder[] = {4, 8, 2, 5, 1, 6, 3, 7}; int postOrder[] = {8, 4, 5, 2, 6, 7, 3, 1}; int size = sizeof(inOrder) / sizeof(inOrder[0]); int postIndex = size - 1; struct Node* root = buildTree(inOrder, postOrder, 0, size - 1, &postIndex); printf("后序遍历结果为:"); postOrderTraversal(root); return 0; } ``` 这段代码会根据中序遍历数组后序遍历数组构建一棵二叉树,并进行后序遍历输出。您可以根据自己的需求修改中序遍历数组后序遍历数组,来构建相应的二叉树。希望能够帮到您!如有需要,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值