论文阅读:ROBUST AND FULLY AUTOMATED SEGMENTATION OF MANDIBLE FROM CT SCANS

论文信息

IEEE International Symposium on Biomedical Imaging (ISBI) 2017
ISBI跟MICCAI差不多 领域里面顶级会议

分为互补的两步,recognition 和 delineation。

  • recognition: 用random forest regression 来在三维中 localize 下颌骨;
  • delineation: 用基于三维梯度的模糊连接图像分割算法 3D gradient-based fuzzy connectedness (FC) image segmentation algorithm, operating on the recognized mandible sub-volume.

背景

各种重要性就不用提了,反正是手术/治疗的前提。

previous work中,LS,SSM,appearance models(这个不懂),用来分割下颌骨。最近,MRF,CRF replace了这些方法(这么直接说代替了不好吧???),同时,给予配准的方法(atlas-based)结合了shape和appearance,具有较高的accuracy。

总结现有问题的方法:

  • 存在CT伪影的情况下,缺乏鲁棒性。
  • 缺少那种model-free的方法,用model的方法会有假阳性。

为了克服这两个问题,文章提出了一个data-driven的,基于RF和FC的分割,并用状态机来优化结果。

方法

这里写图片描述

还是两步,先识别定位,然后再描绘分割。(recognition = localization; delineation = segmentation.)
The recognition step can help constraing the search region of segmentation thus preventing potential leakages.

2.1 Our contributions

  1. completely data-driven without any user interaction;
  2. Aimed to avoid leakages, adapted two methods:
  3. constrain the delineation region into a bounding-box
  4. use a RF regression in a pair programming approach.
  5. gradient-based FC algorithm 比一般的FC更抗噪声、弱边界等。 CT artifacts(CT伪影)
  6. use MICCAI 2015 Head-Neck segmentation challenge data set

2.2 Step I Recognition of mandibular bone

为每一个slice计算一个含有下颌骨的概率。(3个方向的,multi-view)然后结合这些views来improve 下颌骨概率的确定。用标注好的slices(0或1)来训练随机森林。每个方向的概率被融合起来,然后把概率大于等于0.5的slices输出,认为是下颌骨。于是得到一个bounding-box

不过也可以不用三视图,直接用3D随机森林分类器。However, particularly in CMF analysis with low dose CT scans, or CT scans with asymmetric pixel sizes, it is reasonable to control limited information from certain slices and views. CT的像素大小不对称吗???难道说是片内分辨率和片间分辨率的不对称(这一段没看懂,为何不选择3D随机森林

2.3 Step II Gradient-based fuzzy connectivity

这一步是FC分割。文章【6】说FC比Graph-Cuts(GC)和Level-Set(LS)鲁棒性更高。但是FC要用一个预定义的目标物体的灰度分布直方图的平均值和标准差,而由于下颌骨的周围,关节骨头等的强度值都很相似,所以有可能会泄露。因此稍微改进下FC算法,只需要一个参数,从梯度图中计算,而不是从原始的灰度图计算。这样,在分割过程中强调了边界的位置。

接下来文章还介绍了一下FC算法的核心,说是to make the paper self-contained。

2.4 Step III Boundary refinement for final segmentation

文章提出了一种新的边界优化算法来解决泄露。虽然很小,但由于这些结构的灰度分布实在接近,泄露仍然存在。于是设计了一个状态机,有五个状态:initial state/base state/teeth state/leak state/ending state. 连续轴向切片间连接单元的数量和他们的尺寸被用来切换状态。

感觉这个状态机真的是针对了下颌骨分割中的实际难点,点对点去解决的。写论文就要首先了解问题的待解决点在哪里,然后去搞定他。

这里写图片描述

这里写图片描述

这里写图片描述

实验

数据:使用的是MICCAI Head-Neck Challenge 2015 的数据集。把它分为三类,根据伪影的程度,少/中/多。目的是显示文章算法在不同伪影下的表现,鲁棒性。17个少/4个中/19个多,一共30个数据。The in-plane resolution of the CT scans was 1.12×1.12mm, and the slice thickness was 3mm.
3个volumes用来训练RF,剩下的用来测试?? 这比例对吗,一般不应该是训练的更多吗。

结果用UoI,DSC,HD三个测度来评估。

与MICCAI 2015 的winning algorithm 【8】相比,拥有差不多的DSC和HD得分,但可以无视伪影,故更加鲁棒。 而且还有智商两个其他的优势:1)our algorithm is data-driven; 2)regardless of the amount of artifacts, we we obtained similar acccuracies for mandible segmentation
Hence the proposed algorithm is robust.

讨论&启发

文章使用了RF来初始化包围盒(是不是意味着RF不准?),然后用基于梯度的FC来分割。最后用解剖学知识做了一个状态机做后处理优化防泄漏。

limitation:

  • 该算法没有在有骨折和骨缺失的情况下测试。
  • 文章里的防泄漏状态机用的是人体解剖学知识,只能用在健康、正常的人体数据上面,用于临床病体可能会不准。所以以后要可以detect pathological changes in the bones as a part of whole segmentation procedures 才行。

5 Reference

【6】Krzysztof Chris Ciesielski, Jayaram K Udupa, Alexandre X Falc˜ao, and Paulo AV Miranda, “Fuzzy connectedness image segmentation in graph cut formulation: A linear-time algorithm and a comparative analysis,” Journal of Mathematical Imaging and Vision, vol. 44, no. 3, pp. 375–398, 2012.

【8】R. Mannion-Haworth, M. Bowes, A. Ashman, G. Guillard, A. Brett, and G. Vincent, “Fully automatic segmentation of head and neck organs using active appearance models,” 01 2016.

©️2020 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值