pongo(英雄会)题解之理想随机数发生器

点击打开转载地址

不得感慨下本科没好好学习概率论,这道题用概率论很简单。

首先还是题目:

题目详情:

一个理想随机数发生器R,给定参数正整数x,它可以均匀随机产生一个闭区间[0,x]之间的实数(注意是实数,每个实数出现的概率相同)R(x)。现在给定3个正整数a,b,c,我们使用a,b产生两个随机实数R(a), R(b),问R(a) + R(b) <= c的概率有多大?

输入: 正整数a,b,c。正整数均不超过10000

输出: R(a) + R(b) <= c的概率。注意输出是一个有理数(分数),请化为最简分数。(分子分母的最大公约数是1)。

例如 输入a = 1, b = 1, c = 4,输出"1/1"


这道题转换为概率论题目就是:x与y分别在[0,a]和[0,b]上服从均匀分布,并且x与y相互独立,求x+y<=z ,当z=c时的概率。

x与y分别在[0,a]和[0,b]上的概率密度为f(x)=1/a,f(y)=1/b;x与y相互独立,那么联合概率密度f(x,y)=1/(a*b)  x属于[0,a]、y属于[0,b],

....

....


用图示如下(假如a>=b):

就是求阴影部分的面积与矩形面积的比例,分c<=b、b<c<=a、a<c<a+b和c>=a+b四种情况求,记得最后需要约去公约数,即结果中的分子与分母的最大公约数为1,代码如下:

#include <stdio.h>  
#include <iostream>  
#include <string>  
#include<sstream>  
using namespace std;  
class Test {  
public:  
    static int maxG(int a,int b){  
        while(b){  
            int mid=b;  
            b=a%b;  
            a=mid;  
        }  
        return a;  
    }  
    static string calculate (int   a,int   b,int   c){  
        if(c>=a+b)return "1/1";  
        if(a<b){//for a>=b  
                int mid =a;  
                a=b;  
                b=mid;  
        }     
        int res=0;  
        int sqr=2*a*b;  
        if(c<=b){  
            res=c*c;  
        }else if(c>b&&c<=a){  
            //res=c*c-(c-b)*(c-b);  
            res=b*(2*c-b);  
        }else {//a<c<a+b  
            //res=2*a*b-(a+b-c)*(a+b-c);  
            res=2*c*(a+b)-a*a-b*b-c*c;  
        }  
        int maxGYS=1;  
        while((maxGYS=maxG(sqr,res))>1){  
            res/=maxGYS;  
            sqr/=maxGYS;  
        }  
        std::stringstream ss;  
        ss<<res<<"/"<<sqr;  
        std::string ret=ss.str();     
        return ret;  
    }  
};  
//start 提示:自动阅卷起始唯一标识,请勿删除或增加。  
int main(){     
    cout<<Test::calculate(1,3,2)<<endl;     
}   
//end //提示:自动阅卷结束唯一标识,请勿删除或增加。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值