POJ 2886 Who Gets the Most Candies?（线段树+反素数）

Who Gets the Most Candies?
 Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 15617 Accepted: 4944 Case Time Limit: 2000MS

Description

N children are sitting in a circle to play a game.

The children are numbered from 1 to N in clockwise order. Each of them has a card with a non-zero integer on it in his/her hand. The game starts from the K-th child, who tells all the others the integer on his card and jumps out of the circle. The integer on his card tells the next child to jump out. Let A denote the integer. If A is positive, the next child will be the A-th child to the left. If A is negative, the next child will be the (A)-th child to the right.

The game lasts until all children have jumped out of the circle. During the game, the p-th child jumping out will get F(p) candies where F(p) is the number of positive integers that perfectly divide p. Who gets the most candies?

Input

There are several test cases in the input. Each test case starts with two integers N (0 < N ≤ 500,000) and K (1 ≤ K ≤ N) on the first line. The next N lines contains the names of the children (consisting of at most 10 letters) and the integers (non-zero with magnitudes within 108) on their cards in increasing order of the children’s numbers, a name and an integer separated by a single space in a line with no leading or trailing spaces.

Output

Output one line for each test case containing the name of the luckiest child and the number of candies he/she gets. If ties occur, always choose the child who jumps out of the circle first.

Sample Input

4 2
Tom 2
Jack 4
Mary -1
Sam 1

Sample Output

Sam 3

Source

POJ Monthly--2006.07.30, Sempr

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=500050;
struct node
{
int l,r;
int num;
}segTree[4*N];

struct child
{
char name[15];
int val;
}c[N];
void build(int root,int l,int r)
{
segTree[root].l=l;
segTree[root].r=r;
if(l==r)
{
segTree[root].num=1;
return;
}
int mid=(l+r)>>1;
build(root<<1,l,mid);
build(root<<1|1,mid+1,r);
segTree[root].num=segTree[root<<1].num+segTree[root<<1|1].num;
}

int update(int root,int index)
{
segTree[root].num--;
if(segTree[root].l==segTree[root].r)
{
segTree[root].num=0;
return segTree[root].r;
}
if(index<=segTree[root<<1].num)
return update(root<<1,index);
else
return update(root<<1|1,index-segTree[root<<1].num);//左子树中剩余人数不够，那么就得在右子树中找到不够的那一部分，所以得减去左子树中的人数

}
int RPrime[]={//反素数
1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560,10080,15120,
20160,25200,27720,45360,50400,55440,83160,110880,166320,221760,277200,332640,498960,
554400
};

int fact[]={//反素数约数个数
1,2,3,4,6,8,9,10,12,16,18,20,24,30,32,36,40,48,60,64,72,80,84,90,96,100,108,120,128,
144,160,168,180,192,200,216
};
int main()
{
int n,k,i;
while(scanf("%d %d",&n,&k)!=EOF)
{
int cnt=0;
while(RPrime[cnt]<=n)
{
cnt++;
}
cnt--;
for(i=1;i<=n;i++)
scanf("%s %d",c[i].name,&c[i].val);
int mod=n;
build(1,1,n);
int pos=0;
c[pos].val=0;
for(i=0;i<RPrime[cnt];i++)
{
if(c[pos].val>0)
k=((k+c[pos].val-2)%mod+mod)%mod+1;
else
k=((k+c[pos].val-1)%mod+mod)%mod+1;
pos=update(1,k);
mod--;
}
printf("%s %d\n",c[pos].name,fact[cnt]);
}
return 0;
}