1
一种双核CPU的两个核能够同时的处理任务,现在有n个已知数据量的任务需要交给CPU处理,假设已知CPU的每个核1秒可以处理1kb,每个核同时只能处理一项任务。n个任务可以按照任意顺序放入CPU进行处理,现在需要设计一个方案让CPU处理完这批任务所需的时间最少,求这个最小的时间。
输入描述:
输入包括两行:
第一行为整数n(1 ≤ n ≤ 50)
第二行为n个整数length[i](1024 ≤ length[i] ≤ 4194304),表示每个任务的长度为length[i]kb,每个数均为1024的倍数。
输出描述:
输出一个整数,表示最少需要处理的时间
输入例子:
5
3072 3072 7168 3072 1024
输出例子:
9216
参考答案:
import java.util.*;
public class Main{
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
while(sc.hasNext()) {
int n=sc.nextInt();
int[] cpu=new int[n];
int sum=0;
for(int i=0;i<n;i++){
cpu[i]=sc.nextInt()/1024;
sum+=cpu[i];
}
int sumhalf=sum/2;
int[] time=new int[sum+1];
for(int i=0;i<cpu.length;i++){
for(int j=sumhalf;j>=0;j--){
if(j>=cpu[i]) time[j]=Math.max(time[j], time[j-cpu[i]]+cpu[i]);
}
}
System.out.println(Math.max(time[sumhalf], sum-time[sumhalf])*1024);
}
}
}
2
终于到周末啦!小易走在市区的街道上准备找朋友聚会,突然服务器发来警报,小易需要立即回公司修复这个紧急bug。假设市区是一个无限大的区域,每条街道假设坐标是(X,Y),小易当前在(0,0)街道,办公室在(gx,gy)街道上。小易周围有多个出租车打车点,小易赶去办公室有两种选择,一种就是走路去公司,另外一种就是走到一个出租车打车点,然后从打车点的位置坐出租车去公司。每次移动到相邻的街道(横向或者纵向)走路将会花费walkTime时间,打车将花费taxiTime时间。小易需要尽快赶到公司去,现在小易想知道他最快需要花费多少时间去公司。
输入描述:
输入数据包括五行:
第一行为周围出租车打车点的个数n(1 ≤ n ≤ 50)
第二行为每个出租车打车点的横坐标tX[i] (-10000 ≤ tX[i] ≤ 10000)
第三行为每个出租车打车点的纵坐标tY[i] (-10000 ≤ tY[i] ≤ 10000)
第四行为办公室坐标gx,gy(-10000 ≤ gx,gy ≤ 10000),以空格分隔
第五行为走路时间walkTime(1 ≤ walkTime ≤ 1000)和taxiTime(1 ≤ taxiTime ≤ 1000),以空格分隔
输出描述:
输出一个整数表示,小易最快能赶到办公室的时间
输入例子:
2
-2 -2
0 -2
-4 -2
15 3
输出例子:
42
参考答案:
#include<iostream>
#include<vector>
#include<map>
#include<algorithm>
#include<string>
#include<cmath>
using namespace std;
int Wal, Tex;
int getT(intx, inty, intrx, intry){
// 计算走到车站的时间
int wa = (abs(x)+abs(y))*Wal;
// 计算车站到公司的时间
int te = (abs(rx-x) + abs(ry-y))*Tex;
// 返回总花费时间
return wa+te;
}
int main(){
int n;
int tx[51];
int ty[51];
int com[2];
int wal, tex;
cin >> n;
int i=0;
while(i!=n){
cin>>tx[i++];
}
i=0;
while(i!=n){
cin>>ty[i++];
}
cin>>com[0]>>com[1];
cin>>wal>>tex;
Wal = wal;
Tex = tex;
// 直接步行的时间
int walktime = (abs(com[0]) + abs(com[1]))*wal;
// 循环处理从每一个车站乘车去公司的时间
int t = 2147483647;
for(inti=0; i < n; i++){
// 计算每一个车站乘车的总时间
int temp = getT(tx[i], ty[i], com[0], com[1]);
// 判断是否是最小时间
if(temp < t){
t = temp;
}
}
cout<<(t<walktime?t:walktime)<<endl;
}
3
在幼儿园有n个小朋友排列为一个队伍,从左到右一个挨着一个编号为(0~n-1)。其中有一些是男生,有一些是女生,男生用'B'表示,女生用'G'表示。小朋友们都很顽皮,当一个男生挨着的是女生的时候就会发生矛盾。作为幼儿园的老师,你需要让男生挨着女生或者女生挨着男生的情况最少。你只能在原队形上进行调整,每次调整只能让相邻的两个小朋友交换位置,现在需要尽快完成队伍调整,你需要计算出最少需要调整多少次可以让上述情况最少。例如:
GGBBG -> GGBGB -> GGGBB
这样就使之前的两处男女相邻变为一处相邻,需要调整队形2次
输入描述:
输入数据包括一个长度为n且只包含G和B的字符串.n不超过50.
输出描述:
输出一个整数,表示最少需要的调整队伍的次数
输入例子:
GGBBG
输出例子:
2
参考答案:
import java.util.Scanner;
public class shs {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner scan = new Scanner(System.in);
String s = scan.nextLine();
int b=0;
int g=0;
int bsum = 0;
int gsum = 0;
for(int i=0;i<s.length();i++){
if(s.charAt(i) == 'G'){
gsum+=(i-g);
g++;
}else if(s.charAt(i) == 'B'){
bsum+=(i-b);
b++;
}
}
System.out.println(Math.min(bsum, gsum));
}
}
转载来自尚学堂公众号