【边双连通 && 加几条边变成边双连通】POJ - 3177 Redundant Paths

Problem Description

输入n个点,m条边,边有重复,问你最少添加几条边,可以使得任意两个点,至少有两条不同的路径到达。其实就是问你最少添加几条边,使得图变成边双连通这里重边的意思是,1-2 1-2出现了两次,只算一次

思路:

卡了挺久的,就因为有重边,还以为是自己的代码错误。求边双连通的姿势不对。既然有重边,缩点(边双连通缩点)后 判断度得思考思考,有两种方法,一种是用邻接矩阵存边,这样重边就没事了,第二种方法就是,有桥就代表桥的两个端点肯定各自属于各自的边双连通,这时候我们记录下来那个点到那个点是桥,,最少添加边数为缩点后(叶子结点数+1)/2

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define mm 10055
struct node
{
    int to, next;
};
node Map[2 * mm];//存边
int n;//有多少个点
int head[mm], low[mm], dfn[mm], vis[mm], Stack[mm], top, N, sig;
//vis[i]用来存i属于那个边双连通,N代表有几个边双连通
int d[mm];
node MAP[mm]; int cc;
void add(int u, int v, int &cnt)//前向星存边
{
    Map[cnt].to = v;
    Map[cnt].next = head[u];
    head[u] = cnt++;
}
void tardfs(int u, int father)
{
    low[u] = dfn[u] = sig++;
    Stack[top++] = u;
    for(int i = head[u]; ~i; i = Map[i].next)
    {
        int to = Map[i].to;
        if(!dfn[to])
        {
            tardfs(to, u);
            low[u] = min(low[u], low[to]);
            if(low[to] > dfn[u])//割边,记录桥的左右端点,为了后面求度所需
            {
                MAP[cc++] = (node){u, to};
            }
        }
        else if(!vis[to] && to != father)
        {
            low[u] = min(dfn[to], low[u]);
        }
    }
/*    printf("%d %d %d\n", u, low[u], dfn[u]);*/
    if(low[u] == dfn[u])//缩点
    {
        N++;
        do
        {
            int t = Stack[top - 1];
            vis[t] = N;
            top--;
        }while(Stack[top] != u);
    }
}
void tarjan()
{
    top = 0, N = 0, sig = 1;
    memset(vis, 0, sizeof(vis));
    for(int i = 1; i <= n; i++)
    {
        if(!vis[i]) {
            tardfs(i, i);
        }
    }
}
int main()
{
    int m, i, u, v;
    while(~scanf("%d %d", &n, &m))
    {
        int cnt = 0;
        memset(head, -1, sizeof(head));
        memset(MAP, 0, sizeof(MAP));//用来存桥的左右端点
        for(i = 0; i < m; i++)
        {
            scanf("%d %d", &u, &v);
            add(u, v, cnt);
            add(v, u, cnt);
        }
        cc = 0;
        tarjan();
        memset(d, 0, sizeof(d));
        for(i = 0; i < cc; i++)
        {
            u = MAP[i].to, v = MAP[i].next;
            if(vis[u] != vis[v])//求度
            {
                d[vis[u]]++;
                d[vis[v]]++;
            }
        }
        int ans = 0;
        for(i = 1; i <= N; i++)
        {
            if(d[i] == 1) ans++;//叶子节点
        }
        printf("%d\n", (ans + 1) / 2);//最少添加边的个数
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值