【构造 && 随机函数 && 概率论 && 思维】Gym - 100851J Jump

Step1 Problem:

交互题
你每次猜一个长度为n的由0,1组成的字符串
如果有n/2个位置对应相等,返回n/2
如果有n个位置对应相等,返回n(此时相当于猜对)
否则,返回0
最多可以猜 n+500次,如何猜对隐藏串
数据范围:
1<=n<=1000 同时 n 是 偶数

Step2 Involving algorithms:

随机函数 期望几何分布 思维

Step3 Ideas:

对于一个串n,每个位置猜对的概率是1/2,有n/2个位置猜对的概率 C(n/2, n) * (1/2)^n
对于这个式子,n越大,概率越小,n最大为1000,概率为0.025左右
猜对次数的期望 E(x) = 1/p = 1/0.025 = 40 所以40次基本能猜对。
这时候我们得到对n/2个位置的01串
翻转第一个位置的串的前提下,去分别翻转其他位置
如果返回n/2
假设第一个位置一开始是错的,翻转位置原本是对的
假设第一个位置一开始是对的,翻转位置原本是错的
记录一下位置,然后翻转成全对或者全错,询问一下即可

Step4 Code:

#include<bits/stdc++.h>
using namespace std;
int vis[1005];
char s[1005];
int main()
{
    srand(time(NULL));
    int n, ok;
    scanf("%d", &n);
    s[n+1] = '\0';
    while(1)
    {
        for(int i = 1; i <= n; i++)
        {
            s[i] = (rand()%2) + '0';
        }
        printf("%s\n", s+1);
        cin >> ok;
        if(ok == n/2 || ok == n) break;
    }
    if(ok == n/2)
    {
        memset(vis, 0, sizeof(vis));
        s[1] = ((s[1]-'0')^1) + '0';
        for(int i = 2; i <= n; i++)
        {
            s[i] = ((s[i]-'0')^1) + '0';
            printf("%s\n", s+1);
            cin >> ok;
            if(ok == n/2) {
                vis[i] = 1;
            }
            s[i] = ((s[i]-'0')^1) + '0';
        }
        for(int i = 2; i <= n; i++)
        {
            if(!vis[i])
                s[i] = ((s[i]-'0')^1) + '0';
        }
        printf("%s\n", s+1);
        cin >> ok;
        if(!ok)
        {
            for(int i = 1; i <= n; i++)
            {
                s[i] = ((s[i]-'0')^1) + '0';
            }
            printf("%s\n", s+1);
        }
    }
    return 0;
}
阅读更多

没有更多推荐了,返回首页