【有源汇有上下界网络流的最小流】HDU - 3157 Crazy Circuits

Step1 Problem:

给你 n 个点,m 条流量下界是 low ,上界是 inf 的单向边。+ 是源点,- 是汇点。
如果存在可行流,求源点到汇点的最小流。
数据范围:
0 <= n <= 50, 1 <= m <= 200, 1 <= low <= 100.

Step2 Ideas:

有源汇可行流的流量只是对应一组可行流,并不是最大流或者最小流。
S->T 跑一波最大流,先把不需要经过 t->s 的流量跑掉。
然后建立 t->s 流量为 inf 的边,
在跑 S->T 最大流,这时的最大流 = t->s 流的流量。
此时 t->s 流的流量就是在满足可行流下,至少需要的最小流。

Step3 Code:

#include<bits/stdc++.h>
using namespace std;
const int inf = 0x3f3f3f3f;
const int N = 600;
const int M = 100000;
struct node
{
    int to, cap, next;
}Map[M];
int s, t, S, T;
int head[N], cnt, lsum[N];
int vis[N], cur[N];
bool bfs(int s, int e)
{
    memset(vis, -1, sizeof(vis));
    queue<int> q;
    q.push(s);
    vis[s] = 0;
    while(!q.empty())
    {
        s = q.front(), q.pop();
        for(int i = head[s]; ~i; i = Map[i].next)
        {
            int to = Map[i].to, cap = Map[i].cap;
            if(cap && vis[to] == -1)
            {
                vis[to] = vis[s] + 1;
                q.push(to);
            }
        }
    }
    if(vis[e] == -1) return 0;
    else return 1;
}
int dfs(int s, int e, int f)
{
    if(s == e) return f;
    int ans = 0;
    for(int &i = cur[s]; ~i; i = Map[i].next)
    {
        int to = Map[i].to, &cap = Map[i].cap;
        if(vis[to] > vis[s] && cap)
        {
            int d = dfs(to, e, min(f, cap));
            if(d)
            {
                cap -= d;
                Map[i^1].cap += d;
                f -= d;
                ans += d;
                if(!f) break;
            }
        }
    }
    if(ans) return ans;
    vis[s] = -1;
    return 0;
}
int dinic(int s, int e)
{
    int ans = 0;
    while(bfs(s, e))
    {
        memcpy(cur, head, sizeof(head));
        ans += dfs(s, e, inf);
    }
    return ans;
}
int read()
{
    char s1[10];
    scanf("%s", s1);
    if(s1[0] == '+') return s;
    else if(s1[0] == '-') return t;
    int sum;
    sscanf(s1, "%d", &sum);
    return sum;
}
void add(int u, int v, int cap)
{
    Map[cnt] = (node){v, cap, head[u]};
    head[u] = cnt++;
    Map[cnt] = (node){u, 0, head[v]};
    head[v] = cnt++;
}
int main()
{
    int n, m;
    while(~scanf("%d %d", &n, &m) && (n||m))
    {
        cnt = 0;
        memset(head, -1, sizeof(head));
        memset(lsum, 0, sizeof(lsum));
        s = 0, t = n+1, S = n+2, T = n+3;
        int u, v, w;
        for(int i = 1; i <= m; i++)
        {
            u = read(), v = read(), w = read();
            add(u, v, inf);
            lsum[v] += w;
            lsum[u] -= w;
        }
        int sum = 0;
        for(int i = 0; i <= n+1; i++) {
            if(lsum[i] > 0) {
                sum += lsum[i];
                add(S, i, lsum[i]);
            }
            if(lsum[i] < 0) add(i, T, -lsum[i]);
        }
        dinic(S, T);
        add(t, s, inf);
        dinic(S, T);
        int flag = true;
        for(int i = head[S]; ~i; i = Map[i].next)
        {
            if(Map[i].cap) {//超级源点得满流
                flag = false;
                break;
            }
        }
        if(flag) {
            for(int i = head[s]; ~i; i = Map[i].next)
            {
                if(Map[i].to == t) {
                    printf("%d\n", Map[i].cap);//输出 t->s 流过的流量
                    break;
                }
            }
        }
        else printf("impossible\n");//不满流
//        int ans, sum1=0;
//        sum1 += dinic(S, T);
//        add(t, s, inf);
//        ans = dinic(S, T);//ans = t->s 流过的流量
//        sum1 += ans;
//        if(sum == sum1)
//        {
//            printf("%d\n", ans);
//        }
//        else printf("impossible\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值