Tensorflow实战Google深度学习框架 笔记

1. 定义两个不同的图 import tensorflow as tf g1 = tf.Graph() with g1.as_default(): v = tf.get_variable("v", [1], initializer = tf.zeros_initia...

2017-09-28 18:16:48

阅读数 1472

评论数 1

深度信念网络(DBN)

1.初识深度信念网络   深度信念网络是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Ob...

2017-09-25 15:07:46

阅读数 888

评论数 1

受限玻尔兹曼机基础教程

目录 定义与结构重构概率分布多层结构代码示例:堆叠式受限玻尔兹曼机参数与变量k连续受限玻尔兹曼机后续内容其他资源 定义与结构 受限玻尔兹曼机(RBM)由Geoff Hinton发明,是一种用于降维、分类、回归、协同过滤、特征学习和主题建模的算法。(如需通过实例...

2017-09-25 15:04:40

阅读数 2500

评论数 0

生成式对抗网络(Generative Adversarial Networks,GAN)

在学习 Variational Auto-Encoder 时,同时注意到了 GAN 研究的火热。但当时觉得 GAN 非常不成熟(训练不稳定,依赖各种说不清的 tricks;没有有效的监控指标,需要大量的人工判断,因此难以扩展到图像之外的高维数据)。在读了 Goodfellow 的 tutorial...

2017-09-25 10:15:44

阅读数 718

评论数 0

变分自编码器(Variational Auto-Encoder,VAE)

近年,随着有监督学习的低枝果实被采摘的所剩无几,无监督学习成为了研究热点。VAE(Variational Auto-Encoder,变分自编码器)[1,2] 和 GAN(Generative Adversarial Networks) 等模型,受到越来越多的关注。 笔者最近也在学习 VA...

2017-09-25 10:02:31

阅读数 10059

评论数 2

Tensorflow 实战 笔记

TensorFlow第一步 from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets("MNIST_DATA/",one_hot=True) print...

2017-09-17 17:33:21

阅读数 457

评论数 0

流形学习(Manifold Learning)简单介绍

传统的机器学习方法中,数据点和数据点之间的距离和映射函数f都是定义在欧式空间中的,然而在实际情况中,这些数据点可能不是分布在欧式空间中的,因此传统欧式空间的度量难以用于真实世界的非线性数据,从而需要对数据的分布引入新的假设。 流形(Manifold)是局部具有欧式空间性质的空间,包括各种纬度...

2017-09-16 12:48:11

阅读数 22923

评论数 3

NMF 非负矩阵分解 -- 原理与应用

版权声明:本文为博主原创文章,未经博主允许不得转载。 目录(?)[-] 原理 K选择困难症解不唯一几何意义 应用概述 1 特征学习2 图像分析3 话题识别4 语音处理5 时序分割temporal segmentation6 聚类7 机器人控制8 生物医学工程和...

2017-09-16 12:34:16

阅读数 758

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭