word2vec前世今生

2013年,Google开源了一款用于词向量计算的工具——word2vec,引起了工业界和学术界的关注。首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练;其次,该工具得到的训练结果——词向量(word embedding),可以很好地度量词与词之间的相似性。随着深度学习(...

2018-01-31 19:38:03

阅读数 517

评论数 0

词嵌入(word2vec)-NNLM(Neural Network Language Model)

基本概念  词编码  向量空间子结构  One-Hot  Bag of words(词袋模型)  TF-IDF  语言模型  分布式表示  共现矩阵NNLM(Neural Network Language Model)神经网络语言模型  NNLM的基本思想  NNLM原理  ...

2018-01-31 17:11:29

阅读数 176

评论数 0

How the backpropagation algorithm works

http://neuralnetworksanddeeplearning.com/chap2.html 接上一篇的最后,我们要训练多层网络的时候,最后关键的部分就是求梯度啦。纯数学方法几乎是不可能的,那么反向传播算法就是用来求梯度的,用了一个很巧妙的方法。  反向传播算法应该是神经...

2018-01-25 15:16:47

阅读数 71

评论数 0

One Class SVM, SVDD(Support Vector Domain Description)

今天给大家介绍一下one class classification以及用SVDD(support vector domain description)做one class classification。最近接触了一下one class classification,挺有意思的,和多类class...

2018-01-25 11:25:49

阅读数 1905

评论数 1

一文读懂遗传算法工作原理(附Python实现)

一文读懂遗传算法工作原理(附Python实现) 机器之心 5 个月前 近日,Analyticsvidhya 上发表了一篇题为《Introduction to Genetic Algorithm & their application in data scien...

2018-01-17 10:30:25

阅读数 156

评论数 0

如何通俗易懂地解释遗传算法?

作者:sjyan 链接:https://www.zhihu.com/question/23293449/answer/120220974 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 大三的时候上了一门人工智能,其中有一次作业就用到了遗传算法,问...

2018-01-17 09:41:43

阅读数 892

评论数 0

遗传算法入门

一.进化论知识    作为遗传算法生物背景的介绍,下面内容了解即可:   种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。   个体:组成种群的单个生物。   基因 ( Gene ) :一个遗传因子。    染色体 ( Chromos...

2018-01-17 09:34:55

阅读数 68

评论数 0

非常好的理解遗传算法的例子

遗传算法的手工模拟计算示例 为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各     个主要执行步骤。         例:求下述二元函数的最大值:     (1) 个体编码            遗传算法的运算对象是表示个体的符号串,所以必须把变...

2018-01-17 09:34:26

阅读数 103

评论数 0

遗传算法详解(GA)

本文是去年课题组周报中的一个专题讲解,详细讲了GA,由于是周报,所以十分详细。很适合初学者入门。文中也简单提及了模拟退火算法。文章综合参考了一些互联网资料。发博客以备忘! 三:遗传算法         照例先给出科学定义:        遗传算法(Genetic Algo...

2018-01-17 09:33:56

阅读数 205

评论数 0

模拟退火算法

一、模拟退火算法概念 关于爬山算法与模拟退火,有一个有趣的比喻,为了找出地球上最高的山,一群有志气的兔子们开始想办法: 方法一:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法(或局部搜索法),它不能保证局部最优值就是全局最优值。 ...

2018-01-17 09:32:05

阅读数 762

评论数 1

Deep Q-Network 学习笔记(二)

一、思路 Q-Learning与神经网络结合使用就是 Deep Q-Network,简称 DQN。在现实中,状态的数量极多,并且需要人工去设计特征,而且一旦特征设计不好,则得不到想要的结果。 神经网络正是能处理解决这个问题,取代原来 Q 表的功能。 当神经网络与Q-Learnin...

2018-01-17 09:20:36

阅读数 485

评论数 0

Deep Q-Network 学习笔记(一)

一、思路                                        图 1.1   这里,先自己对那个例子的理解总结一下。 要解决的问题是:如上图 1.1 中有 5 个房间,分别被标记成 0-4,房间外可以看成是一个大的房间,被标记成 5,现在智能...

2018-01-17 08:59:20

阅读数 2666

评论数 0

多维数据查询OLAP及MDX语言学习整理

OLAP 为了满足业务管理和决策的报表系统(包括传统报表、数据仓库、OLAP等)也被创建出来,企业主管通过报表了解企业的总体运行状态。 但是,随着企业间竞争的加剧和市场节奏的进一步加快,企业的日常管理需要对关键业务指标的更加实时的监控和反馈。比如:制造业需要更及时的仓库调度、金融业需要更实...

2018-01-16 13:51:38

阅读数 1509

评论数 0

数据立方体

数据立方体( Cube)     如上图所示,这是由三个维度构成的一个OLAP立方体,立方体中包含了满足条件的cell(子立方块)值,这些cell里面包含了要分析的数据,称之为度量值。显而易见,一组三维坐标唯一确定了一个子立方。   多位模型的基本概念介绍:   ...

2018-01-16 13:30:47

阅读数 1589

评论数 0

浅谈数据仓库建设中的数据建模方法

简介: 本文的主要内容不是介绍现有的比较流行的主要行业的一些数据模型,而是将笔者在数据仓库建设项目中的一些经验,在这里分享给大家。希望帮助大家在数据仓库项目建设中总结出一套能够合乎目前业界规范的,满足大部分行业数据仓库建设标准的一种方法。 所谓水无定势,兵无常法。不同的行业,有不同行业的特点...

2018-01-16 11:27:52

阅读数 123

评论数 0

星型模型和雪花型模型比较

一、概述 在多维分析的商业智能解决方案中,根据事实表和维度表的关系,又可将常见的模型分为星型模型和雪花型模型。在设计逻辑型数据的模型的时候,就应考虑数据是按照星型模型还是雪花型模型进行组织。 当所有维表都直接连接到“ 事实表”上时,整个图解就像星星一样,故将该模型称为星型模型,如图 1...

2018-01-16 11:25:37

阅读数 103

评论数 0

强化学习系列之九:Deep Q Network (DQN)

文章目录 [隐藏] 1. 强化学习和深度学习结合 2. Deep Q Network (DQN) 算法 3. 后续发展 3.1 Double DQN 3.2 Prioritized Replay 3.3 Dueling Network 4. 总结 强化学习系列系...

2018-01-16 10:45:34

阅读数 2229

评论数 0

强化学习系列之六:策略梯度

文章目录 [隐藏] 1. 策略参数化 2. 策略梯度算法 2.1 MC Policy Gradient 2.2 Actor-Critic 3. 为什么要有策略梯度 4. 总结 强化学习系列系列文章       上一篇文章介绍价值函数近似,用模型拟合价值函...

2018-01-16 10:35:16

阅读数 1093

评论数 0

强化学习系列之五:价值函数近似

目前,我们已经介绍了一些强化学习的算法,但是我们无法在实际问题中运用这些算法。       为什么呢?因为算法估算价值函数 (v(s)) 或者 (q(s,a)),保存这些价值函数意味着保存所有状态。而实际问题中,状态的数目非常巨大,遍历一遍的事情就别想了。比如,围棋的状态总数是(3^{19}...

2018-01-16 10:31:37

阅读数 1269

评论数 0

强化学习系列之四:模型无关的策略学习

文章目录 [隐藏] 1. 一些前置话题 2. MC Control 3. SARSA 4. Q Learning 5. 做点实验 5.1. 算法稳定性 5.2. 贪婪策略的影响 5.3. 不同算法的效果对比 6. 总结 强化学习系列系列文章    ...

2018-01-16 10:27:54

阅读数 308

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭