python-对象之hashable&unhashable与immutable&mutable

首先,hashable和unhashable先来看一下官方文档上面对hashable的解释: hashable An object is hashable if it has a hash value which never changes during its lifetime (it need...

2018-03-30 17:00:02

阅读数:44

评论数:0

Python可迭代对象中的添加和删除(add,append,pop,remove,insert)

 学习python的list,tuple,dict,set的时候被插入和删除的用法弄得有点晕,所以进行归纳,以便记忆对于List:[python] view plain copyclassmates = ['Michael', 'Bob', 'Tracy']  classmates.append(...

2018-03-30 13:29:35

阅读数:172

评论数:0

Python之List中remove,pop,del区别分析

Python之List中remove,pop,del区别分析代码块remove#remove删除首个符合条件的元素,并不删除特定的索引。 **n =[1,2,2,3,4,5] n.remove(3) print (n)** #输出 [1, 2, 2, 4, 5]123456pop#pop按照索...

2018-03-30 13:28:05

阅读数:141

评论数:0

python 列表排序方法sort、sorted技巧篇

Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列。1)排序基础简单的升序排序是非常容易的。只需要调用sorted()方法。它返回一个新的list,新的list的元素基于小于运算符(__lt__)来排序。&...

2018-03-29 13:34:37

阅读数:404

评论数:0

Python遍历列表的四种方法

方式一: app_list = [1234, 5677, 8899] <!-- lang: python --> for app_id in app_list: <!-- lang: python --> ...

2018-03-28 11:03:37

阅读数:92

评论数:0

Python程序员最常犯的十个错误

Python程序员最常犯的十个错误不管是在学习还是工作过程中,人都会犯错。虽然Python的语法简单、灵活,但也一样存在一些不小的坑,一不小心,初学者和资深Python程序员都有可能会栽跟头。本文是Toptal网站的程序员梳理的10大常见错误,非常有参考意义。大家在开发过程中需要格外注意。译文中如...

2018-03-28 10:57:40

阅读数:65

评论数:0

python中format函数

python中format函数用于字符串的格式化通过关键字1 print('{名字}今天{动作}'.format(名字='陈某某',动作='拍视频'))#通过关键字 2 grade = {'name' : '陈某某', 'fenshu': '59'} 3 print('{name}电工考了{fen...

2018-03-28 10:20:37

阅读数:731

评论数:0

python的位置参数、默认参数、关键字参数、可变参数区别

python的位置参数、默认参数、关键字参数、可变参数区别一、位置参数调用函数时根据函数定义的参数位置来传递参数。#!/usr/bin/env python # coding=utf-8 def print_hello(name, sex): sex_dict = {1: u'先生', ...

2018-03-28 10:19:50

阅读数:333

评论数:0

Python中函数的参数传递与可变长参数

Python中函数的参数传递与可变长参数1.Python中也有像C++一样的默认缺省函数1 def foo(text,num=0): 2 print text,num 3 4 foo("asd") #asd 0 5 foo("def...

2018-03-28 09:44:54

阅读数:106

评论数:0

Python一些特殊用法(map、reduce、filter、lambda、列表推导式等)

Map函数:原型:map(function, sequence),作用是将一个列表映射到另一个列表,使用方法:def f(x):    return x**2l = range(1,10)map(f,l)Out[3]: [1, 4, 9, 16, 25, 36, 49, 64, 81]Reduce...

2018-03-27 18:10:47

阅读数:77

评论数:0

sklearn preprocessing 数据预处理(OneHotEncoder)

1. one hot encodersklearn.preprocessing.OneHotEncoderone hot encoder 不仅对 label 可以进行编码,还可对 categorical feature 进行编码:>>&g...

2018-03-26 10:31:53

阅读数:114

评论数:0

最大熵模型 Maximum Entropy Model

熵的概念在统计学习与机器学习中真是很重要,熵的介绍在这里:信息熵 Information Theory 。今天的主题是最大熵模型(Maximum Entropy Model,以下简称MaxEnt),MaxEnt 是概率模型学习中一个准则,其思想为:在学习概率模型时,所有可能的模型中熵最大的模型是最...

2018-03-23 15:05:53

阅读数:96

评论数:0

精通Python自然语言处理

import nltktext=" Welcome readers. I hope you find it interesting. Please do reply."from nltk.tokenize import sent_tokenizeprint(se...

2018-03-23 13:48:55

阅读数:301

评论数:0

Parsing, CFG and PCFG

语法解析问题语法解析问题是比词性标注更高层的问题, 它以一个完整的句子做为输入, 以一棵对应的语法解析树作为输出。语法解析树中不仅反应了各个单词的词性, 也反应出了各个词之间的关系,比如短语(动词短语,名词短语等)甚至句子中的主谓关系等。举个课程中的例子:语法解析通常都会被表达成监督学习问题,而训...

2018-03-22 09:56:49

阅读数:378

评论数:0

python——双重列表推导式+函数,优雅而强大

看书的过程中,看到了这种精妙(书里译文如此)的用法。使用场景如下:列表ls:[python] view plain copyls = [('x',['open1','open1','open1']),('y',['open1','open1','open0']),('z',['open0','op...

2018-03-21 15:38:28

阅读数:81

评论数:0

随机采样和随机模拟:吉布斯采样Gibbs Sampling

为什么要用吉布斯采样什么是sampling? sampling就是以一定的概率分布,看发生什么事件。举一个例子。甲只能E:吃饭、学习、打球,时间T:上午、下午、晚上,天气W:晴朗、刮风、下雨。现在要一个sample,这个sample可以是:打球+下午+晴朗。吉布斯采样的通俗解释?问题是我们不知道p...

2018-03-21 09:33:05

阅读数:295

评论数:0

Needleman-Wunsch 算法和Smith-Waterman算法

全局和局部序列比对:      全局序列比对  尝试找到两个完整的序列 S1 和 S2 之间的最佳比对。如S1=GCCCTAGCG S2=GCGCAATG 如果设定每个匹配字符为1分,每个空格为-2分,每个不匹配为-1分,则下面的比对就是全局最优比对:S1'=GCCCTAGCG S2'=GCGC_...

2018-03-19 18:38:54

阅读数:382

评论数:0

基于JACCARD推荐(0,1推荐)

1、什么是jaccard?    杰卡德相似系数(Jaccard similarity coefficient),也称杰卡德指数(Jaccard Index),是用来衡量两个集合相似度的一种指标。Jaccard相似指数用来度量两个集合之间的相似性,它被定义为两个集合交集的元素个数除以并集的元素个数...

2018-03-19 16:52:52

阅读数:194

评论数:0

编辑距离算法详解:Levenshtein Distance算法

 算法基本原理:假设我们可以使用d[ i , j ]个步骤(可以使用一个二维数组保存这个值),表示将串s[ 1…i ] 转换为 串t [ 1…j ]所需要的最少步骤个数,那么,在最基本的情况下,即在i等于0时,也就是说串s为空,那么对应的d[0,j] 就是 增加j个字符,使得s转化为t,在j等于0...

2018-03-19 16:45:26

阅读数:720

评论数:0

字符串编辑距离(Levenshtein距离)算法

基本介绍  Levenshtein距离是一种计算两个字符串间的差异程度的字符串度量(string metric)。我们可以认为Levenshtein距离就是从一个字符串修改到另一个字符串时,其中编辑单个字符(比如修改、插入、删除)所需要的最少次数。俄罗斯科学家Vladimir Levenshtei...

2018-03-19 16:44:22

阅读数:907

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭