线性代数笔记19--克拉默法则、逆矩阵、三角形面积推导

1. 逆矩阵

对于二阶方阵

[ a b c d ] − 1 = 1 a d − b c [ d − b − c a ] \begin{bmatrix} a & b\\c & d \end{bmatrix}^{-1}= \frac{1}{ad-bc} \begin{bmatrix} d & -b\\-c & a \end{bmatrix} [acbd]1=adbc1[dcba]

我们假设 A i j A_{ij} Aij为代数余子式,由所有代数余子式构成的矩阵为 C C C

C i → 表示矩阵第 i 行形成的行向量 \overrightarrow{C_i}表示矩阵第i行形成的行向量 Ci 表示矩阵第i行形成的行向量

根据行列式公式可以得到

A i → C ⊤ n i → = d e t   A \overrightarrow{A_i}\overrightarrow{C^{\top}n_i} = det\ A Ai Cni =det A

对于可逆方阵 A A A来说,其逆矩阵为

A − 1 = 1 d e t   A C ⊤ A^{-1}=\frac{1}{det\ A}C^{\top} A1=det A1C

对于
A i → C j ⊤ → , i ≠ j \overrightarrow{A_i}\overrightarrow{C^{\top}_j},i \ne j Ai Cj ,i=j
相当于将原行列式的第 j j j行替换成 i i i行的行列式的值;两列行相同,新行列式值为 0 0 0

所以对于矩阵 T T T
T = A C ⊤ T i j = A i → C j ⊤ → = { d e t   A , i = j 0 , i ≠ j 1 d e t   A T = I T=AC^{\top}\\ T_{ij}=\overrightarrow{A_i}\overrightarrow{C^{\top}_j}= \begin{cases} det\ A,\quad i = j\\ 0,\quad i \ne j \end{cases}\\ \frac{1}{det\ A} T=I T=ACTij=Ai Cj ={det A,i=j0,i=jdet A1T=I

2.克莱默法则

方程
A X = b ⇒ X = A − 1 b = 1 d e t   A C ⊤ b AX=b \Rightarrow X=A^{-1}b=\frac{1}{det\ A}C^{\top}b AX=bX=A1b=det A1Cb

C ⊤ = [ C 11 C 21 . . . C n 1 . . . C 1 n C 2 n . . . C n n ] b = [ b 1 . . . b n ] 对于解 x i = C i ⊤ b C^{\top}= \begin{bmatrix} C_{11} C_{21}...C_{n1}\\ ...\\ C_{1n}C_{2n}...C_{nn} \end{bmatrix}\\ b= \begin{bmatrix} b_1\\...\\b_n \end{bmatrix}\\ 对于解x_i=C^{\top}_ib C= C11C21...Cn1...C1nC2n...Cnn b= b1...bn 对于解xi=Cib

C i ⊤ C^{\top}_i Ci对应代数余子式矩阵的第 i i i列,所以其乘积为将 b b b替换到 A A A中第 i i i列的行列式的值。

3. 体积

方阵的秩等于方阵所形成平行 n n n面体体积。

三角形面积公式推导

A ( x 1 , y 1 ) , B ( x 2 , y 2 ) cos ⁡ θ = A B ∣ A ∣ ∣ B ∣ 同时平方 cos ⁡ 2 θ = ( A ⋅ B ) 2 ∣ A ∣ 2 ∣ B ∣ 2 换成 sin ⁡ 2 θ sin ⁡ 2 θ = ∣ A ∣ 2 ∣ B ∣ 2 − ( A ⋅ B ) 2 ∣ A ∣ 2 ∣ B ∣ 2 同乘 ∣ A ∣ 2 转化为 B 边上的高的平方 ∣ A ∣ 2 sin ⁡ 2 θ = ∣ A ∣ 2 ∣ B ∣ 2 − ( A ⋅ B ) 2 ∣ B ∣ 2 同乘 ∣ B ∣ 2 转化为平行四边形面积平方 ∣ B ∣ 2 ∣ A ∣ 2 sin ⁡ 2 θ = ∣ A ∣ 2 ∣ B ∣ 2 − ( A ⋅ B ) 2 A(x_1,y_1),B(x_2,y_2)\\ \cos \theta=\frac{AB}{|A||B|}同时平方\\ \cos ^{2}\theta=\frac{(A\cdot B)^{2}}{|A|^{2}|B|^{2}} 换成\sin ^{2} \theta\\ \sin^{2}\theta=\frac{|A|^{2}|B|^{2}-(A\cdot B)^{2}}{|A|^{2}|B|^{2}} 同乘|A|^{2}转化为B边上的高的平方\\ |A|^{2}\sin^{2}\theta=\frac{|A|^{2}|B|^{2}-(A\cdot B)^{2}}{|B|^{2}} 同乘|B|^{2}转化为平行四边形面积平方\\ |B|^{2}|A|^{2}\sin^{2}\theta=|A|^{2}|B|^{2}-(A\cdot B)^{2} A(x1,y1),B(x2,y2)cosθ=A∣∣BAB同时平方cos2θ=A2B2(AB)2换成sin2θsin2θ=A2B2A2B2(AB)2同乘A2转化为B边上的高的平方A2sin2θ=B2A2B2(AB)2同乘B2转化为平行四边形面积平方B2A2sin2θ=A2B2(AB)2

将坐标点带入
S p a 2 = ( x 1 2 + y 1 2 ) ( x 2 2 + y 2 2 ) − ( x 1 x 2 + y 1 y 2 ) 2 = ( x 1 x 2 ) 2 + ( y 1 y 2 ) 2 + ( x 1 y 2 ) 2 + ( x 2 y 1 ) 2 − ( x 1 x 2 ) 2 − ( y 1 y 2 ) 2 − 2 ( x 1 y 2 x 2 y 1 ) = ( x 1 y 2 − x 2 y 1 ) 2 S p a = a b s ∣ x 1 y 2 − x 2 y 1 ∣ \begin{align} S_{pa}^{2}&=(x_1^{2}+y_1^{2})(x_2^{2}+y_2^{2})-(x_1x_2+y_1y_2)^{2} \nonumber \\&=(x_1x_2)^{2}+(y_1y_2)^{2}+(x_1y_2)^2+(x_2y_1)^2-(x_1x_2)^2-(y_1y_2)^2-2(x_1y_2x_2y_1)\nonumber \\&=(x_1y_2 - x_2y_1)^{2} \nonumber\\ S_{pa} &= abs|x_1y_2-x_2y_1|\nonumber \end{align} Spa2Spa=(x12+y12)(x22+y22)(x1x2+y1y2)2=(x1x2)2+(y1y2)2+(x1y2)2+(x2y1)2(x1x2)2(y1y2)22(x1y2x2y1)=(x1y2x2y1)2=absx1y2x2y1

如果引入第三个点,化为行列式的形式
[ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ] \begin{bmatrix} x_1 & y_1 & 1\\ x_2 & y_2 & 1\\ x_3 & y_3 & 1\\ \end{bmatrix} x1x2x3y1y2y3111
前两行都减去第三行就变成了上面推导的向量形式
[ x 1 − x 3 y 1 − y 3 0 x 2 − x 3 y 2 − y 3 0 x 3 y 3 1 ] \begin{bmatrix} x_1-x_3 & y_1-y_3 & 0\\ x_2-x_3 & y_2-y_3 & 0\\ x_3 & y_3 & 1\\ \end{bmatrix} x1x3x2x3x3y1y3y2y3y3001

S p a = a b s ∣ ( x 1 − x 3 ) ( y 2 − y 3 ) − ( x 2 − x 3 ) ( y 1 − y 3 ) ∣ S t r = 1 2 a b s ∣ ( x 1 − x 3 ) ( y 2 − y 3 ) − ( x 2 − x 3 ) ( y 1 − y 3 ) ∣ S_{pa}=abs|(x_1-x_3)(y_2-y_3)-(x_2-x_3)(y_1-y_3)|\\ S_{tr}=\frac{1}{2}abs|(x_1-x_3)(y_2-y_3)-(x_2-x_3)(y_1-y_3)|\\ Spa=abs(x1x3)(y2y3)(x2x3)(y1y3)Str=21abs(x1x3)(y2y3)(x2x3)(y1y3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值