1. 简介
欧拉函数 ϕ ( n ) \phi(n) ϕ(n)表示在小于等于 n n n的正整数中与 n n n互质的个数。
如
ϕ
(
6
)
=
2
(
1
5
)
ϕ
(
12
)
=
4
(
1
5
7
11
)
\phi(6)=2 \quad (1\ 5)\\ \phi(12) = 4\quad (1\ 5\ 7 \ 11)
ϕ(6)=2(1 5)ϕ(12)=4(1 5 7 11)
欧拉函数是一个积性函数;
所谓积性函数,指的是满足下面的条件的函数
∀ a , b ∈ N + , s . t . gcd ( a , b ) = 1 ⇒ ϕ ( a b ) = ϕ ( a ) ϕ ( b ) \forall a, b \in N_+, \ s.t.\ \gcd(a,b) =1 \Rightarrow \phi(ab) = \phi(a)\phi(b) ∀a,b∈N+, s.t. gcd(a,b)=1⇒ϕ(ab)=ϕ(a)ϕ(b)
本文提供两种比较初等方式证明欧拉函数的积性性质,内容源于知乎。
- 算术基本定理+容斥原理
- 中国剩余定理
2. 证明一:唯一分解定理+容斥原理
根据算术基本定理,我们有任意一个大于 1 1 1的正整数可以唯一表示为下面的形式
n = Π i = 1 m p i a i n=\Pi_{i=1}^{m}p_i^{a_i} n=Πi=1mpiai
我们令全集
S
n
:
=
{
1
,
2
,
⋯
,
n
}
S_n := \{1,2,\cdots,n\}
Sn:={1,2,⋯,n}
我们可以将
S
n
S_n
Sn中
n
n
n的因子根据是是否整除素数
p
i
p_i
pi进行分类
A
p
i
:
=
{
x
∣
x
=
k
p
i
∧
x
∈
S
n
,
k
∈
N
∗
}
A_{p_i} := \{x|\ x = kp_i \land x \in S_n, k \in N^* \}
Api:={x∣ x=kpi∧x∈Sn,k∈N∗}
因此我们可以将所有与
n
n
n互质的数的集合表示为
∩
i
=
1
m
A
p
i
‾
\cap_{i=1}^{m} \overline {A_{p_i}}
∩i=1mApi
应用容斥原理得到
∩
i
=
1
m
A
p
i
‾
=
S
n
−
A
p
1
−
⋯
+
(
−
1
)
m
∣
A
p
1
∩
A
p
2
∩
⋯
A
p
m
∣
\cap_{i=1}^{m} \overline {A_{p_i}} = S_{n} - A_{p_1} - \cdots+(-1)^{m}|A_{p_1} \cap A_{p_2} \cap \cdots A_{p_m}|
∩i=1mApi=Sn−Ap1−⋯+(−1)m∣Ap1∩Ap2∩⋯Apm∣
显然有
p
1
∣
s
∧
p
2
∣
s
⇒
p
1
p
2
∣
s
p_1 \mid s\ \land p_2 \mid s \Rightarrow p_1p_2 \mid s
p1∣s ∧p2∣s⇒p1p2∣s
因此
∣
A
p
1
∩
A
p
2
⋯
∩
A
p
m
∣
=
n
p
1
p
2
⋯
p
m
|A_{p_1} \cap A_{p_2} \cdots \cap A_{p_m}| = \frac{n}{p_1p_2\cdots p_m}
∣Ap1∩Ap2⋯∩Apm∣=p1p2⋯pmn
计数后的结果
∣
∩
i
=
1
m
A
p
i
‾
∣
=
n
−
n
p
1
−
⋯
−
n
p
m
+
n
p
1
p
2
+
n
p
1
p
3
+
⋯
+
n
p
m
−
1
p
m
⋯
+
(
−
1
)
m
n
p
1
p
2
|\cap_{i=1}^m \overline{A_{p_i}}| =n -\frac{n}{p_1} - \cdots - \frac{n}{p_m} + \\ \frac{n}{p_1p_2} +\frac{n}{p_1p_3}+ \cdots + \frac{n}{p_{m-1}p_m}\\ \cdots +(-1)^m \frac{n}{p_1p_2}
∣∩i=1mApi∣=n−p1n−⋯−pmn+p1p2n+p1p3n+⋯+pm−1pmn⋯+(−1)mp1p2n
整理后得到
ϕ
(
n
)
=
∣
∩
i
=
1
m
A
p
i
‾
∣
=
n
×
Π
i
=
1
m
(
1
−
1
p
i
)
\phi(n) =|\cap_{i=1}^m \overline{A_{p_i}}| = n \times \Pi _{i=1}^{m}(1-\frac{1}{p_i})
ϕ(n)=∣∩i=1mApi∣=n×Πi=1m(1−pi1)
到此,我们导出了欧拉函数的定义式;下面直接带进去算就行了。
假设
a
b
a\ b
a b的唯一分解式如下
a
=
Π
i
=
1
s
p
i
x
i
b
=
Π
j
=
1
t
q
j
y
j
a = \Pi_{i=1}^s p_i^{x_i} \\ b = \Pi_{j=1}^t q_j^{y_j}
a=Πi=1spixib=Πj=1tqjyj
由于
gcd
(
a
,
b
)
=
1
\gcd(a, b) =1
gcd(a,b)=1, 因此
∀
i
∈
{
1
,
2
,
⋯
,
s
}
,
j
∈
{
1
,
2
,
⋯
,
t
}
;
p
i
≠
q
j
\forall i \in \{ 1,2, \cdots,s\}, j \in \{ 1,2, \cdots,t\};\\ p_i \ne q_j
∀i∈{1,2,⋯,s},j∈{1,2,⋯,t};pi=qj
因此
a
b
ab
ab的唯一分解式可表示为
a
b
=
Π
i
=
1
s
p
i
x
i
Π
j
=
1
t
q
j
y
j
ab = \Pi_{i=1}^s p_i^{x_i} \Pi_{j=1}^tq_j^{y_j}
ab=Πi=1spixiΠj=1tqjyj
综上可得
ϕ
(
a
b
)
=
a
b
Π
i
=
1
s
(
1
−
1
p
i
)
Π
j
=
1
t
(
1
−
1
q
j
)
=
a
Π
i
=
1
s
(
1
−
1
p
i
)
b
Π
j
=
1
t
(
1
−
1
q
j
)
=
ϕ
(
a
)
ϕ
(
b
)
\begin{align*} \phi(ab) &=ab\Pi_{i=1}^{s} (1-\frac{1}{p_i})\Pi_{j=1}^{t}(1-\frac{1}{q_j})\\ &= a\Pi_{i=1}^{s} (1-\frac{1}{p_i})b\Pi_{j=1}^{t}(1-\frac{1}{q_j}) \\ &=\phi(a)\phi(b) \end{align*}
ϕ(ab)=abΠi=1s(1−pi1)Πj=1t(1−qj1)=aΠi=1s(1−pi1)bΠj=1t(1−qj1)=ϕ(a)ϕ(b)
Q . E . D Q.E.D Q.E.D
3. 证明二:中国剩余定理
先引入一个引理 ,证明放在最后面;现在直接用就完了。
gcd
(
a
,
x
)
=
gcd
(
b
,
x
)
=
1
⇒
gcd
(
a
b
,
x
)
=
1
\gcd(a,x)=\gcd(b,x) =1 \Rightarrow \gcd(ab, x) = 1
gcd(a,x)=gcd(b,x)=1⇒gcd(ab,x)=1
设 S ( n ) = { 1 ≤ x ≤ n ∣ gcd ( x , n ) = 1 } S(n) = \{ 1 \le x \le n | \gcd(x,n)=1\} S(n)={1≤x≤n∣gcd(x,n)=1},
S ( n ) S(n) S(n)表示所有与 n n n互质的数的集合。
容易得到
∀
1
≤
x
≤
a
b
,
gcd
(
a
b
,
x
)
=
1
⇒
gcd
(
a
,
x
)
=
gcd
(
b
,
x
)
=
1
\forall 1 \le x \le ab, \gcd(ab,x) =1 \Rightarrow \gcd(a,x) =\gcd(b,x) =1
∀1≤x≤ab,gcd(ab,x)=1⇒gcd(a,x)=gcd(b,x)=1
因此
gcd
(
a
,
x
m
o
d
a
)
=
gcd
(
b
,
x
m
o
d
b
)
=
1
\gcd(a,x \bmod a) = \gcd(b, x \bmod b) =1
gcd(a,xmoda)=gcd(b,xmodb)=1
从而有 S ( a b ) S(ab) S(ab)到 { ( x , y ) ∣ x ∈ S ( a ) , y ∈ S ( b ) } \{ (x,y) | x \in S(a), y \in S(b)\} {(x,y)∣x∈S(a),y∈S(b)}的映射。
∀ 1 ≤ x ≤ a , 1 ≤ y ≤ b , gcd ( a , x ) = gcd ( b , y ) = 1 ; \forall 1 \le x \le a, 1 \le y \le b, \gcd(a,x) =\gcd(b,y) =1; ∀1≤x≤a,1≤y≤b,gcd(a,x)=gcd(b,y)=1;
根据中国剩余定理我们可以得到
∃
!
1
≤
z
≤
a
b
,
s
.
t
.
{
z
≡
x
(
m
o
d
a
)
z
≡
y
(
m
o
d
b
)
\exists! \ 1 \le z \le ab, s.t. \\ \begin{equation*} \begin{cases} z \equiv x \quad( \bmod\ a) \\ z \equiv y \quad (\bmod \ b) \end{cases} \end{equation*}
∃! 1≤z≤ab,s.t.{z≡x(mod a)z≡y(mod b)
因此
gcd
(
a
,
z
)
=
gcd
(
b
,
z
)
=
1
\gcd(a,z) =\gcd(b,z) =1
gcd(a,z)=gcd(b,z)=1, 根据引理可得
gcd ( a b , z ) = 1 \gcd(ab,z)=1 gcd(ab,z)=1。
因此有从 { ( x , y ) ∣ x ∈ S ( a ) , y ∈ S ( b ) } \{ (x,y)|x \in S(a), y \in S(b)\} {(x,y)∣x∈S(a),y∈S(b)}到 S ( a b ) S(ab) S(ab)的映射。
综上, { ( x , y ) ∣ x ∈ S ( a ) , y ∈ S ( b ) } \{ (x,y)|x \in S(a), y \in S(b)\} {(x,y)∣x∈S(a),y∈S(b)}与 S ( a b ) S(ab) S(ab)的大小一致,又由于
∣ S ( n ) ∣ = ϕ ( n ) |S(n)| = \phi(n) ∣S(n)∣=ϕ(n), 因此
gcd ( a , b ) = 1 ⇒ ϕ ( a b ) = ϕ ( a ) ϕ ( b ) \gcd(a,b) =1 \Rightarrow \phi(ab) =\phi(a)\phi(b) gcd(a,b)=1⇒ϕ(ab)=ϕ(a)ϕ(b)。
Q . E . D Q.E.D Q.E.D
4. 引理证明
gcd
(
a
,
x
)
=
gcd
(
b
,
x
)
=
1
⇒
gcd
(
a
b
,
x
)
=
1
\gcd(a,x)=\gcd(b,x) =1 \Rightarrow \gcd(ab, x) = 1
gcd(a,x)=gcd(b,x)=1⇒gcd(ab,x)=1
证明一: 裴蜀系数
由于
a
,
x
a,x
a,x互质,那么根据裴蜀定理
∃
m
1
,
n
1
∈
Z
,
s
.
t
.
a
m
1
+
x
n
1
=
1
\exists m_1,n_1 \in Z, \ s.t. \quad am_1+xn_1=1
∃m1,n1∈Z, s.t.am1+xn1=1
同理
∃
m
2
,
n
2
∈
Z
,
s
.
t
.
b
m
2
+
x
n
2
=
1
\exists m_2,n_2 \in Z,\ s.t. \quad bm_2+xn_2=1
∃m2,n2∈Z, s.t.bm2+xn2=1
两式相乘
(
a
m
1
+
x
n
1
)
(
b
m
2
+
x
n
2
)
=
(
m
1
m
2
)
a
b
+
(
a
m
1
n
2
+
b
m
2
n
1
+
n
1
n
2
x
)
x
=
1
(am_1+xn_1)(bm_2+xn_2) =\\ (m_1m_2) ab +(am_1n_2+bm_2n_1+n_1n_2x) x=1
(am1+xn1)(bm2+xn2)=(m1m2)ab+(am1n2+bm2n1+n1n2x)x=1
因此存在
m
′
=
m
1
m
2
,
n
′
=
(
a
m
1
n
2
+
b
m
2
n
1
+
n
1
n
2
x
)
m' =m_1m_2,n'=(am_1n_2+bm_2n_1+n_1n_2x)
m′=m1m2,n′=(am1n2+bm2n1+n1n2x)使得
m ′ a b + n ′ x = 1 m'ab+n'x=1 m′ab+n′x=1; 因此 gcd ( a b , x ) = 1 \gcd(ab, x) =1 gcd(ab,x)=1。
证明二: 反证法
假设 gcd ( a b , x ) = d > 1 \gcd(ab, x) = d >1 gcd(ab,x)=d>1,
d > 1 d >1 d>1,那么必有质数 p > 1 , p ∣ d p > 1, p \mid d p>1,p∣d , p ∣ a b , p ∣ x p \mid ab, p \mid x p∣ab,p∣x。
因此要么 p ∣ a p \mid a p∣a, 要么 p ∣ b p \mid b p∣b。
进而 p ∣ gcd ( a , x ) p \mid \gcd(a,x) p∣gcd(a,x)或者 p ∣ gcd ( b , x ) p \mid \gcd(b,x) p∣gcd(b,x),
而这与 gcd ( a , x ) = gcd ( b , x ) = 1 \gcd(a,x) = \gcd(b,x) =1 gcd(a,x)=gcd(b,x)=1矛盾,所以假设不成立,
gcd ( a b , x ) = 1 \gcd(ab,x)=1 gcd(ab,x)=1。
Q . E . D Q.E.D Q.E.D