正在走向自律
码龄8年
关注
提问 私信
  • 博客:460,863
    社区:567
    动态:5,322
    466,752
    总访问量
  • 266
    原创
  • 1,518
    排名
  • 13,477
    粉丝
  • 1,258
    铁粉
  • 学习成就

个人简介:创作之路漫漫其修远兮,吾将上下而求索

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2016-06-16
博客简介:

小相探索IT世界

博客描述:
通过本博客,我将分享关于IT行业的专业见解、案例分析以及实用技巧,旨在帮助读者更好地了解IT领域的发展动态和应用实践。我将重点关注各种技术领域的前沿知识,如人工智能、AI大模型、Java、区块链、物联网、大数据分析等,以及它们在商业和生活中的应用。
查看详细资料
博客首页
  • 原力等级
    成就
    当前等级
    7
    当前总分
    3,863
    当月
    317
个人成就
  • 广东小乘科技有限公司
  • 获得7,850次点赞
  • 内容获得3,201次评论
  • 获得6,936次收藏
  • 代码片获得1,662次分享
创作历程
  • 256篇
    2024年
  • 2篇
    2023年
  • 2篇
    2022年
  • 2篇
    2021年
  • 3篇
    2019年
  • 2篇
    2018年
  • 19篇
    2017年
成就勋章
  • 入选《本周创作者榜》第9名
TA的专栏
  • 1.IT基础知识
    8篇
  • IT入门知识大纲
    12篇
  • 2.编程语言
    1篇
  • python
    13篇
  • Java
    38篇
  • 3.软件开发
    8篇
  • 4.数据库
    25篇
  • 5.前端开发
    1篇
  • JavaScript
    6篇
  • 6.后端开发
    1篇
  • Linux
    11篇
  • 数字人
    1篇
  • 安全漏洞
    11篇
  • 7.移动开发
    5篇
  • 8.云计算
    2篇
  • 9.人工智能
    50篇
  • AIGC
    24篇
  • LLM
    12篇
  • 自然语言处理
    3篇
  • AI写作
    8篇
  • ChatGPT
    16篇
  • 10.IT职业发展
    10篇
  • IT行业前景
    8篇
  • 职业生涯
    17篇
  • 开发工具
    28篇
兴趣领域 设置
  • Python
    pythonpip
  • Java
    javatomcatspringmavenintellij-ideaspring bootspring cloudjvmjava-rocketmq
  • 编程语言
    pythonjavaphpjavascript
  • 开发工具
    eclipsegithubgitwindowssvnidepycharmdockerpostmanintellij-ideaideasublime textintellij ideagitlab
  • 数据结构与算法
    排序算法哈希算法
  • 大数据
    oraclejsonsqldatabasemysqlredismongodbmemcachedelasticsearchrabbitmqmemcachepostgresqlnosqlsqlserver数据库rocketmq
  • 前端
    html5javascriptjquerycssajax正则表达式chromeeasyuibootstrapechartsvue.jspostmanelementuihtmlnpmyarnwebpack
  • 后端
    phpmvcsqlmysqltomcatspringnginxrabbitmqnode.jsspring boot后端restful架构分布式中间件gatewayribbonspring cloudsentinelhystrixlogback
  • 云原生
    docker容器jenkinsdevopskubernetes云原生微服务gateway
  • 移动开发
    微信小程序
  • 人工智能
    语音识别人工智能数据分析gpt-3chatgpt文心一言
  • 网络与通信
    httpwebsocket网络安全网络协议tcp/iprpc
  • 嵌入式
    物联网iot
  • 微软技术
    sqlwindowssqlserver
  • 操作系统
    linuxubuntuwindowscentos
  • 搜索
    搜索引擎elasticsearch全文检索
  • 设计模式
    单例模式
  • 测试
    单元测试测试工具压力测试postmanjmeter
  • 云平台
    腾讯云阿里云华为云
  • 软件工程
    githubgit个人开发代码规范
  • 区块链
    区块链
  • 运维
    linuxubuntuapache负载均衡centosnginxdocker服务器运维ssh容器jenkinsdevopskubernetes系统架构elkskywalkingopenresty
  • 网络空间安全
    网络安全
  • 服务器
    linuxubuntu负载均衡centos缓存
  • 学习和成长
    程序人生学习方法
  • 用户体验设计
    photoshop
  • 行业数字化
    教育电商政务
  • 前沿技术
    低代码AI作画chatgptAIGC
  • IT工具
    vimsublime textphotoshopwpswordexcel企业微信钉钉腾讯会议石墨文档processon蓝湖飞书7-zip火绒安全editplus有道云笔记网易邮箱大师
  • 开源
    githubgit开源gitlabgitee
  • AIGC
    AI作画chatgpt文心一言gptgpu算力embedding
《正在走向自律》
代码编织者-探索技术与创新边界
"编程是艺术,代码是画布,而我是画家。" —— 技术诗人

欢迎来到我的技术小宇宙,在这里,我将带您穿梭于代码的海洋,探索最新的IT趋势,分享我的项目经验和技术见解。

// 一段有启发性的代码示例
function helloWorld() {
console.log("Hello, World of Technology!");
}
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

180人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

AI写作(七)的核心技术探秘:情感分析与观点挖掘

情感分析与观点挖掘在 AI 写作中起着至关重要的作用。情感分析能够帮助 AI 理解文本中的情感倾向,无论是正面、负面还是中性。在当今信息时代,准确把握用户情绪对于提供个性化体验和做出明智决策至关重要。例如,在社交媒体上,企业可以通过情感分析了解用户对其产品或服务的评价,从而及时调整营销策略。在 AI 写作中,情感分析可以使文章更具感染力,更好地与读者产生情感共鸣。观点挖掘则有助于提取文本中的关键观点和意见。通过对大量文本的分析,AI 可以快速准确地找出不同人的观点,为文章提供丰富的素材和多角度的思考。
原创
发布博客 前天 06:00 ·
711 阅读 ·
27 点赞 ·
6 评论 ·
18 收藏

AI 写作(六):核心技术与多元应用(6/10)

AI 写作在当今数字化时代正发挥着越来越重要的作用。它不仅极大地提高了写作效率,还为不同领域带来了创新的可能性。AI 写作的核心技术主要包括基于模板的文本生成和基于深度学习的文本生成。基于模板的文本生成通常依赖预先设定的模板和规则,能够快速生成结构较为规范的文本。例如,在新闻报道中,可以根据不同的新闻类型设置模板,快速生成新闻稿件的框架,然后再进行细节填充。而基于深度学习的文本生成则利用神经网络模型,通过大量文本数据的训练,学习语言的模式和规律,从而能够生成更加自然、流畅的文本。
原创
发布博客 2024.11.10 ·
1738 阅读 ·
72 点赞 ·
62 评论 ·
71 收藏

AI 写作(五)核心技术之文本摘要:分类与应用(5/10)

文本摘要在 AI 写作中扮演着至关重要的角色。在当今信息爆炸的时代,人们每天都被大量的文本信息所包围,如何快速有效地获取关键信息成为了一个迫切的需求。文本摘要技术正是为了解决这个问题而诞生的,它能够对长篇文本进行提炼,提取出关键信息,为用户节省时间和精力。文本摘要广泛应用于多个领域。在新闻领域,新闻机构可以利用文本摘要技术快速生成新闻摘要,让读者在短时间内了解新闻的主要内容。例如,一篇关于国际政治事件的长篇新闻报道可以通过文本摘要技术生成简洁明了的摘要,让读者快速了解事件的核心内容。
原创
发布博客 2024.11.09 ·
1026 阅读 ·
35 点赞 ·
0 评论 ·
23 收藏

AI写作(四)预训练语言模型:开启 AI 写作新时代(4/10)

预训练语言模型在自然语言处理领域占据着至关重要的地位。它以其卓越的语言理解和生成能力,成为众多自然语言处理任务的关键工具。预训练语言模型的发展历程丰富而曲折。从早期的神经网络语言模型开始,逐渐发展到如今的大规模预训练语言模型。例如,Bengio 等人开发的最早期的神经语言模型(NLMs),可以与传统的 n-gram 模型相媲美。随后,Mikolov 发布了 RNNLM,极大地推广了 NLMs 的应用。
原创
发布博客 2024.11.09 ·
1289 阅读 ·
32 点赞 ·
0 评论 ·
16 收藏

AI 写作(三)文本生成算法:创新与突破(3/10)

本文深入探讨了 AI 写作中的多种文本生成算法。首先介绍了生成式与判别式模型的区别与特点,包括优化准则、对观察序列的处理、训练复杂度以及支持的训练方式等方面的差异,并对比了它们在 AI 写作中的优缺点。接着详细阐述了长短期记忆网络(LSTM)在文本生成中的应用,包括技术原理与结构、实现步骤与流程以及应用示例与效果。还深入分析了 Transformer 与自注意力机制,介绍了其模型架构与组成、自注意力机制的作用以及在 AI 写作中的重要作用。
原创
发布博客 2024.11.08 ·
1755 阅读 ·
76 点赞 ·
57 评论 ·
63 收藏

AI写作(二)NLP:开启自然语言处理的奇妙之旅(2/10)

本文全面深入地探讨了自然语言处理(NLP)的基本概念与任务、词向量与语言模型、NLP 中的关键技术、应用与发展以及代码经典案例等方面。在基本概念与任务部分,我们明确了自然语言处理面临的诸多挑战,包括语言的多义性、歧义性、对上下文的依赖、数据获取的难度、多样性和变化性、复杂的语法语义规则以及隐私安全问题等。词向量作为一种将单词映射到连续向量空间的技术,具有强大的语义表示能力、能处理词汇稀疏性问题、支持语义类推任务、可扩展到句子和文档级别表示且具有跨语言和跨模态应用潜力以及高效的计算和存储方式。
原创
发布博客 2024.11.08 ·
915 阅读 ·
17 点赞 ·
0 评论 ·
29 收藏

AI 写作(一):开启创作新纪元(1/10)

AI 写作是一种创新的文本生成方式,它充分借助人工智能技术,在自然语言处理和机器学习技术的支撑下,模仿人类的写作能力,为用户提供高效、准确的文本内容。AI 写作通过大规模的语料库和预训练模型,不断学习和掌握各种语言要素,包括语法、词汇、句子结构等。这些模型可以是循环神经网络(RNN)、长短时记忆网络(LSTM)、Transformer 等,它们能够分析大量的文本数据,理解语言的模式、规律和结构,从而生成与输入数据相似的文本内容。AI 写作的出现为社会带来了诸多积极影响。
原创
发布博客 2024.11.05 ·
2420 阅读 ·
102 点赞 ·
98 评论 ·
84 收藏

《AI 大模型:重塑软件开发新未来》

本文深入探讨了 AI 大模型在软件开发中的重要作用。从技术突破与发展趋势开始,阐述了 AI 大模型在自然语言处理和计算机视觉领域的惊人成就,以及未来在软件开发中的广阔前景。接着,详细介绍了 AI 大模型在软件开发中的具体应用,包括智能开发工具、单元测试自动生成、智能化运维、智能研发助手和性能分析与优化等方面。同时,分析了 AI 大模型带来的软件开发新范式,从传统的代码驱动到描述驱动的转变,以及低代码平台的核心优势。此外,还探讨了 AI 大模型的广泛应用场景和对软件开发者、软件开发企业的影响。
原创
发布博客 2024.11.05 ·
1145 阅读 ·
19 点赞 ·
8 评论 ·
34 收藏

深度学习(十):伦理与社会影响的深度剖析(10/10)

深度学习作为一项强大的技术,在带来诸多益处的同时,也引发了一系列伦理和社会问题。在伦理方面,数据隐私、偏见以及责任归属等挑战亟待解决。我们需要借鉴成功的法规案例,如欧盟的 GDPR,加强数据管理和隐私保护,努力消除算法偏见,并建立明确的责任归属机制。在社会影响方面,自动化虽然对传统职业造成冲击,但也创造了新的职业机会。个人、社会和教育机构都应积极应对,提升技能和加强人才培养,以适应就业结构的变化。
原创
发布博客 2024.11.03 ·
1690 阅读 ·
90 点赞 ·
62 评论 ·
78 收藏

深度学习(九):推荐系统的新引擎(9/10)

深度学习在推荐系统中的应用为用户带来了更智能、更个性化的推荐体验。通过与推荐系统的融合,深度学习解决了传统推荐系统在处理大规模、高维度数据时的力不从心,以及冷启动和数据稀疏等问题。在应用方式上,各种 2vec 的应用、基于神经协同过滤的推荐以及在个性化推荐系统中的特征表示学习、序列模型和嵌入模型等,都为推荐系统的准确性和个性化提供了有力支持。构建深度学习推荐系统时,需要考虑整体框架与技术选择,如大数据框架和深度学习模型的选择。同时,通过具体案例分析,可以更好地理解深度学习在推荐系统中的实际应用。
原创
发布博客 2024.10.31 ·
1555 阅读 ·
87 点赞 ·
77 评论 ·
68 收藏

深度学习(八) TensorFlow、PyTorch、Keras框架大比拼(8/10)

深度学习框架在当今人工智能和机器学习领域中占据着至关重要的地位。其中,TensorFlow 由 Google 开发,自 2015 年发布以来,凭借其灵活的计算图、自动微分功能以及跨平台支持等特点,迅速成为主流深度学习框架之一。它在图像识别、自然语言处理、语音识别等多个领域都有广泛应用。例如,在图像识别任务中,通过卷积神经网络能够准确识别物体、人脸和车辆等。PyTorch 由 Facebook 推出,以其动态图机制、简洁直观的 API 和强大的社区支持备受青睐。
原创
发布博客 2024.10.31 ·
1024 阅读 ·
29 点赞 ·
1 评论 ·
11 收藏

深度学习(七)深度强化学习:融合创新的智能之路(7/10)

深度强化学习作为一种融合了深度学习和强化学习的技术,在游戏、自动驾驶等领域展现出了巨大的潜力。它结合了深度学习的强大感知能力和强化学习的优秀决策能力,能够处理复杂的任务和环境。然而,深度强化学习仍然面临着一些挑战,如数据需求、计算资源、可解释性和安全性等。未来,研究人员将致力于解决这些挑战,推动深度强化学习的发展,使其在更多领域发挥重要作用。
原创
发布博客 2024.10.29 ·
1393 阅读 ·
94 点赞 ·
93 评论 ·
76 收藏

感谢每一位粉丝的支持,没有你们就没有我的今天!荣获CSDN本周创作者第14名,也登上了月度精选榜单,这是我们共同努力的结果!

发布动态 2024.10.29

深度学习(六)CNN:图像处理的强大工具(6/10)

卷积神经网络(Convolutional Neural Networks,CNN)是深度学习的代表算法之一,在深度学习中占据着重要地位。CNN 的发展历程可追溯至 20 世纪 80 至 90 年代,时间延迟网络和 LeNet - 5 是最早出现的卷积神经网络。随着深度学习理论的提出和数值计算设备的改进,CNN 在 21 世纪后得到了快速发展,并被广泛应用于计算机视觉、自然语言处理等领域。CNN 的结构组成主要包括输入层、卷积层、池化层、全连接层和 Softmax 层等。
原创
发布博客 2024.10.27 ·
1662 阅读 ·
26 点赞 ·
15 评论 ·
50 收藏

《1024 程序员节:代码铸就的荣耀与梦想》

本文详细介绍了 1024 程序员节的起源、发展、特殊意义、庆祝活动、程序员的工作与生活以及经典代码等方面内容。1024 程序员节起源于俄罗斯,后在中国也有了特定的节日定义。1024 这个数字在二进制世界中具有重要意义,它是 2 的十次方,在计算机存储和数据处理中占据关键地位。同时,在中国文化中,“1G” 与 “一级棒” 谐音,为其增添了积极的文化内涵。在庆祝活动方面,企业有大张旗鼓型、内部动员型和神秘莫测型等多种方式。城市也会举办程序员节盛典,如长沙的 1024 程序员节,设置了丰富的活动板块。
原创
发布博客 2024.10.24 ·
1923 阅读 ·
103 点赞 ·
66 评论 ·
70 收藏

深度学习(五):语音处理领域的创新引擎(5/10)

深度学习在语音处理领域取得了显著的成就,为语音识别、语音合成、语音增强等任务提供了强大的解决方案。通过深度神经网络、卷积神经网络和循环神经网络等模型,能够从语音信号中提取特征并进行处理,提高了语音处理的准确性和鲁棒性。同时,数据预处理技术如采样、分帧、加窗等也为深度学习模型的应用提供了基础。在实际应用中,智能语音助手和语音翻译等案例展示了深度学习在语音处理领域的价值。案例一:使用 Python 的 TensorFlow 实现简单的语音识别# 假设已经有预处理好的语音数据和标签# 构建模型])
原创
发布博客 2024.10.24 ·
992 阅读 ·
25 点赞 ·
4 评论 ·
22 收藏

深度学习(四):自然语言处理的强大引擎(4/10)

深度学习在自然语言处理领域取得了显著的成就,为文本分类、情感分析、机器翻译、问答系统等任务提供了强大的解决方案。RNN、LSTM、GRU 等模型能够有效地处理文本数据中的序列信息,而 Transformers 库等工具则为快速构建高效的自然语言处理模型提供了便利。然而,自然语言处理仍然面临着语言的歧义性、语义理解的复杂性等挑战,需要不断探索新的解决方案。
原创
发布博客 2024.10.23 ·
2601 阅读 ·
94 点赞 ·
57 评论 ·
96 收藏

深度学习(三)在计算机视觉领域的璀璨应用(3/10)

深度学习在计算机视觉领域的应用已经取得了令人瞩目的成就,从图像分类、目标检测、图像分割到对抗生成网络的图像生成、风格迁移以及在自动驾驶、安防监控等实际场景中的应用,都展示了其强大的能力。不同的卷积神经网络架构各有特点,在性能和效率上存在差异,需要根据具体任务和计算资源进行选择。未来,深度学习在计算机视觉领域将朝着提升模型可解释性、深化跨域学习和迁移学习、发展 3D 计算机视觉以及突破视频理解等方向发展,同时也将在智能家居、医疗健康、工业制造、教育娱乐等领域不断拓展应用。
原创
发布博客 2024.10.23 ·
932 阅读 ·
23 点赞 ·
0 评论 ·
17 收藏

深度学习(二)框架与工具:开启智能未来之门(2/10)

深度学习框架和工具在人工智能领域中发挥着至关重要的作用。通过对主流深度学习框架的深入剖析,我们了解到不同框架在模型构建、训练效率、代码可读性等方面各有优劣。同时,数据预处理工具和模型可视化工具也为深度学习模型的开发和优化提供了有力支持。# 定义一个简单的神经网络# 创建模型实例# 定义损失函数和优化器# 模拟输入数据# 训练模型这个代码案例展示了如何使用 PyTorch 构建一个简单的神经网络,并进行训练。
原创
发布博客 2024.10.22 ·
3142 阅读 ·
101 点赞 ·
117 评论 ·
88 收藏

深度学习(一)基础:神经网络、训练过程与激活函数(1/10)

深度学习是一种基于人工神经网络的学习算法,它通过构建多层的网络结构来学习数据的高层特征表示。与传统的机器学习方法相比,深度学习能够自动提取特征,减少了人工干预,提高了模型的性能和泛化能力。
原创
发布博客 2024.10.22 ·
1368 阅读 ·
16 点赞 ·
2 评论 ·
33 收藏
加载更多