HDU 4722 Good Numbers 数位dp或找规律枚举 数位dp感悟

数位dp感悟:
有一类与数位有关的区间统计问题。这类问题往往具有比较浓厚的数学味道,无法暴力求解,需要在数位上进行递推等操作
方法与 基本思想:
可以从高到低枚举第一次<n对应位是哪一位
¨需要统计区间[l,r]的满足题意的数的个数,这往往可以转换成求[0,r]-[0,l)
¨对于求区间[0,n)有一个通用的方法。
¨对于一个小于n的数,肯定是从高位到低位出现某一位<n的那一位。
¨预处理f数组。
¨F[i,st] 代表位数为i(可能允许前导0。如00058也是个5位数),状态为st的方案数。这里st根据题目需要确定。
¨如i=4,f[i,st]也就是0000~9999的符合条件的数的个数(十进制)
¨决策第i位是多少(suchas 0~9)
¨F[i,st] = F[i,st] + f[i–1,st']

¨st'为相对应的状态


题解:

求区间[l,r]之间有多少个数,各位数和能被10整除。

转化为get(x),区间[0,x]之间有多少个数满足条件。

则答案即为get(r)-get(l-1),问题转化为数位dp。

将x的各位数字储存在bit[]中。

考虑区间[0~5132]

可以转化成[0~999] 、[1000~1999]、[2000~2999]、[3000~3999]、[4000~4999]、[5000~5099]、[5100~5109]、[5110~5119]、[5120~5129]、[5130~5132]

令f[i][j]表示前i位和模10得j的方案数。若i为最后一位,若j=0则f[i][j]=1,否则f[i][j]=0。

用记忆化搜索实现数位dp

dp(int p,int m,bool flag),flag=true 表示当前位p无论取多少都小于数x 。

则dp(i,m) += dp(i+1,(m+k)%10) 0=<k<= (9 or bit[i])

#include <cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define LL long long 
#define bug puts("***********")
#define INF 0x3f3f3f3f

using namespace std;

int bit[100];
LL dp[100][100];
LL DP(int p,int m,int flag)
{
    if(p==0) return (m==0);
    if(dp[p][m]!=-1&&flag) return dp[p][m];
    int k=flag?9:bit[p];
    LL sum=0;
    for(int i=0;i<=k;i++)
        sum+=DP(p-1,(i+m)%10,flag||i!=k);         //因为bit[]中的数是倒着存的
    if(flag) dp[p][m]=sum;
    return sum;
}
LL solve(LL n)
{
    memset(dp,-1,sizeof(dp));
    int num=0;
   
    if(n<0) return 0;               /// 存在n== -1 
    while(n)        
    {
        bit[++num]=n%10;            //bit[]将数倒着存进去了
        n/=10;
    }
    return DP(num,0,0);
}
int main()
{
    int t;
    LL n,m;
    while(~scanf("%d",&t))
    {
        for(int cas=1; cas<=t; cas++)
        {
             scanf("%lld%lld",&n,&m);
            printf("Case #%d: %lld\n",cas,solve(m)-solve(n-1));      ///注意 n-1
        }
    }
    return 0;
}

方法二:

暴力代码用来找规律

 发现: 0-10    1

    0-100  10

           0-1000   100

           0-990  99

    0-992  100

    0-997   100

  基本规律为 n/10 + (1或0)

加1的情况为:n/10*10 到 n  有满足条件的  比如:997: 99 + (990到997是否有满足条件的,如果有则加1)

#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
__int64 ff(__int64 m)
{
    if(m<0)
    return 0;
    __int64 temp=m/10,ans;
    __int64 i;
    ans=temp;
    for(i=temp*10;i<=m;i++)
    {
       __int64 sum=0,t=i;
       while(t)
       {
           sum+=t%10;
           t/=10;
       }
      if(sum%10==0)
      ans++;
    }
    return ans;
}
int main()
{
    int tcase ,tt=1;
    __int64 a,b;
    scanf("%d",&tcase);
    while(tcase--)
    {
        scanf("%I64d%I64d",&a,&b);
        printf("Case #%d: %I64d\n",tt++,ff(b)-ff(a-1));
    }
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值