差分进化算法

差分进化算法 是一种随机的启发式搜索算法,具有较强的鲁棒性和全局寻优能力。

1.算法过程

1.1 初始化

        差分进化算法利用NP个个体,每个个体维度为D的实数值参数向量,将它们作为每一代种群,每个个体表示为:

\mathbf{x}_{i,G},i=1,2,\cdots ,NP

其中i表示个体在种群是的位置,G表示迭代次数,NP为种群大小。一般情况下种群规模越大,多样性越好,寻优能力就越好,但计算强度也越大。通常,NP一般选择在5D\sim 10D之间。

        假设所有随机初始化种群均符合均匀概率分布。如果参数变量x_j\in [x_{min},x_{max}],可以得到

x_{j,i}^0=rand[0,1]*(x_{max}-x_{min})+x_{min}

其中i\in [1,\cdots ,NP],j\in [1,\cdots,D].

1.2. 变异操作

        对以上每个目标向量,标准差分进化算法的变异向量是由下式得到的

\mathbf{v}_i^{G+1}=\mathbf{x}_{t_1}^G+F*(\mathbf{x}_{t_2}^G-\mathbf{x}_{t_3}^G)

其中随机选择种群中的个体位号t_1,t_2,t_3是各不相同的,并且它们也不是第i个个体,所以NP最少需要4个个体,变异算子F\in [0,2]是一个实常数,用于控制偏差变量的缩放程度。一般情况,F_0=0.5通常作为初始变异算子,如果算法过早收敛,则需要增大F或种群规模。

1.3. 交叉操作

        为了增加干扰参数向量的多样性,引入交叉操作,则试验向量可以表示为

\mathbf{u}_i^{G+1}=(u_{1,i}^{G+1},\cdots ,u_{D,i}^{G+1})

        通过以下式子获取试验向量元素值:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bedynamic

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值