差分进化算法 是一种随机的启发式搜索算法,具有较强的鲁棒性和全局寻优能力。
1.算法过程
1.1 初始化
差分进化算法利用NP个个体,每个个体维度为D的实数值参数向量,将它们作为每一代种群,每个个体表示为:
其中i表示个体在种群是的位置,G表示迭代次数,NP为种群大小。一般情况下种群规模越大,多样性越好,寻优能力就越好,但计算强度也越大。通常,NP一般选择在之间。
假设所有随机初始化种群均符合均匀概率分布。如果参数变量,可以得到
其中.
1.2. 变异操作
对以上每个目标向量,标准差分进化算法的变异向量是由下式得到的
其中随机选择种群中的个体位号是各不相同的,并且它们也不是第i个个体,所以NP最少需要4个个体,变异算子
是一个实常数,用于控制偏差变量的缩放程度。一般情况,
通常作为初始变异算子,如果算法过早收敛,则需要增大F或种群规模。
1.3. 交叉操作
为了增加干扰参数向量的多样性,引入交叉操作,则试验向量可以表示为
通过以下式子获取试验向量元素值:

最低0.47元/天 解锁文章
7060

被折叠的 条评论
为什么被折叠?



