愤怒的导数:一点可导和邻域内可导能推出来什么?

愤怒的导数:一点可导和邻域内可导能推出来什么?

一、连续和可导的基本概念

01 连续的定义

设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 的某一邻域内有定义,如果满足以下条件:
lim Δ x → 0 Δ y = lim Δ x → 0 [ f ( x 0 + Δ x ) f ( x 0 ) ] = 0 或 lim x → x 0 f ( x ) = f ( x 0 ) lim _{Delta x ightarrow 0}Delta y=lim _{Delta x ightarrow 0}left[fleft(x_{0}+Delta x ight)-fleft(x_{0} ight) ight]=0或lim limits_{x ightarrow x_{0}} f(x)=fleft(x_{0} ight) Δx→0limΔy=Δx→0lim[f(x0+Δx)f(x0)]=0或x→x0limf(x)=f(x0)
那么就称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 连续;否则称 f ( x ) f(x) f(x) 在点 x 0 x_{0} x0 间断。

即函数在某点连续的充要条件是该点左极限右极限存在且相等并且等于该点函数值。

02 可导的定义

设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 的某邻域内有定义,当自变量 x x x 在 x 0 x_{0} x0 处有增量 Δ x Delta x Δx ( x 0 + Δ x x_{0}+Delta x x0+Δx 点仍在该邻域内 ),

函数相应地有增量 Δ y = f ( x 0 + Δ x ) f ( x 0 ) Delta y=fleft(x_{0}+Delta x ight)-fleft(x_{0} ight) Δy=f(x0+Δx)f(x0),则有:
f ′ ( x 0 ) = d e f lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) f ( x 0 ) Δ x = lim x → x 0 f ( x ) f ( x 0 ) x x 0 f^{prime}left(x_{0} ight)stackrel{d e f}{=}lim _{Delta x ightarrow 0} rac{Delta y}{Delta x}=lim _{Delta x ightarrow 0} rac{fleft(x_{0}+Delta x ight)-fleft(x_{0} ight)}{Delta x}=lim _{x ightarrow x_{0}} rac{f(x)-fleft(x_{0} ight)}{x-x_{0}} f′(x0)=defΔx→0limΔxΔy=Δx→0limΔxf(x0+Δx)f(x0)=x→x0limxx0f(x)f(x0)
如果极限存在,则称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 处可导,此极限值称为函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 处的导数 ( 微商 ) 。

补充:二阶可导的定义

设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 的某邻域 U δ ( x 0 ) U_{delta}left(x_{0} ight) Uδ(x0) 内有一阶导数 ( f ′ ( x ) f^{prime}(x) f′(x) 在点 x 0 x_{0} x0 的某邻域内有定义 ) 。如果极限

lim Δ x → 0 f ′ ( x 0 + Δ x ) f ′ ( x 0 ) Δ x = lim x → x 0 f ′ ( x ) f ′ ( x 0 ) x x 0 displaystyle{lim _{Delta x ightarrow 0} rac{f^{prime}left(x_{0}+Delta x ight)-f^{prime}left(x_{0} ight)}{Delta x}=lim _{x ightarrow x_{0}} rac{f{prime}(x)-f{prime}left(x_{0} ight)}{x-x_{0}}} Δx→0limΔxf′(x0+Δx)f′(x0)=x→x0limxx0f′(x)f′(x0) 存在,则称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 处二阶可导,

即 f ′ ( x ) f^{prime}(x) f′(x) 在 x 0 x_{0} x0 处一阶可导。此极限值称为函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 处的二阶导数,记为 f ′ ′ ( x 0 ) f^{prime prime}left(x_{0} ight) f′′(x0) 。

二、连续作为条件

01 某点连续

f ( x ) 在 x 0 连续 { 1. f ( x ) 在 x 0 邻域内有定义 2. lim x → x 0 f ( x ) = f ( x 0 ) 3. f ( x ) 在 x 0 邻域内连续 4. f ( x ) 在 x 0 可导 f(x) ext { 在 } x_{0} ext { 连续 } Rightarrowleft{egin{array}{l} ext { 1. } f(x) ext { 在 } x_{0} ext { 邻域内有定义 } \ ext { 2. } lim limits_{x ightarrow x_{0}} f(x)=fleft(x_{0} ight) \ ext { 3. } f(x) ext { 在 } x_{0} ext { 邻域内连续 }\ ext { 4. } f(x) ext { 在 } x_{0} ext { 可导 } end{array} ight. f(x)在x0连续1.f(x)在x0邻域内有定义2.x→x0limf(x)=f(x0)3.f(x)在x0邻域内连续4.f(x)在x0可导

02 某邻域内连续

f ( x ) 在 x 0 某邻域 U δ ( x 0 ) 内连续 { 1. f ( x ) 在 U δ ( x 0 ) 邻域内有定义 2. f ( x ) 在 U δ ( x 0 ) 邻域内处处连续 3. f ( x ) 在 x 0 可导 f(x) ext { 在 } x_{0} ext { 某邻域 } U_{delta}left(x_{0} ight) ext { 内连续 } Rightarrowleft{egin{array}{l} 1 . f(x) ext { 在 } U_{delta}left(x_{0} ight) ext { 邻域内有定义 } \ 2 . f(x) ext { 在 } U_{delta}left(x_{0} ight) ext { 邻域内处处连续 } \ 3 . f(x) ext { 在 } x_{0} ext { 可导 } end{array} ight. f(x)在x0某邻域Uδ(x0)内连续1.f(x)在Uδ(x0)邻域内有定义2.f(x)在Uδ(x0)邻域内处处连续3.f(x)在x0可导

03 某去心邻域内连续

f ( x ) 在 x 0 去心邻域 U ° δ ( x 0 ) 内连续 { 1. f ( x ) 在去心邻域 U ° δ ( x 0 ) 内有定义 2. f ( x ) 在去心邻域 U ° δ ( x 0 ) 内处处连续 3. f ( x ) 在 x 0 极限存在 4. f ( x ) 在 x 0 可导 f(x) ext { 在 } x_{0} ext { 去心邻域 } stackrel{circ}{U}_{delta}left(x_{0} ight) ext { 内连续 }Rightarrowleft{egin{array}{l} ext { 1. } f(x) ext { 在去心邻域 } stackrel{circ}{U}_{delta}left(x_{0} ight) ext { 内有定义 } \ ext { 2. } f(x) ext { 在去心邻域 } stackrel{circ}{U}_{delta}left(x_{0} ight) ext { 内处处连续 } \ ext { 3. } f(x) ext { 在 } x_{0} ext { 极限存在 } \ ext { 4. } f(x) ext { 在 } x_{0} ext { 可导 } end{array} ight. f(x)在x0去心邻域U°δ(x0)内连续1.f(x)在去心邻域U°δ(x0)内有定义2.f(x)在去心邻域U°δ(x0)内处处连续3.f(x)在x0极限存在4.f(x)在x0可导

三、可导作为条件

01 某点可导

f ( x ) 在 x 0 可导 { 1. f ′ ( x ) 在 x 0 有定义 2. f ′ ( x ) = f + ′ ( x ) 3. f ( x ) 在 x 0 连续 4. f ( x ) 在 x 0 邻域内连续 5. f ( x ) 在 x 0 邻域内可导 f(x) ext { 在 } x_{0} ext { 可导 } Rightarrowleft{egin{array}{l} ext { 1. } f^{prime}(x) ext { 在 } x_{0} ext { 有定义 } \ ext { 2. } f_{-}{prime}(x)=f_{+}{prime}(x) \ ext { 3. } f(x) ext { 在 } x_{0} ext { 连续 } \ ext { 4. } f(x) ext { 在 } x_{0} ext { 邻域内连续 } \ ext { 5. } f(x) ext { 在 } x_{0} ext { 邻域内可导 } end{array} ight. f(x)在x0可导1.f′(x)在x0有定义2.f′(x)=f+′(x)3.f(x)在x0连续4.f(x)在x0邻域内连续5.f(x)在x0邻域内可导

02 某邻域内可导

f ( x ) 在 x 0 某邻域 U δ ( x 0 ) 内可导 { 1. f ( x ) 在 U δ ( x 0 ) 内连续 2. f ( x ) 在 U δ ( x 0 ) 内极限存在 3. f ( x ) 在 U δ ( x 0 ) 内有定义 4. f ′ ( x ) 在 U δ ( x 0 ) 内连续 5. f ′ ( x ) 在 U δ ( x 0 ) 内极限存在 6. f ′ ( x ) 在 U δ ( x 0 ) 内有定义 f(x) ext { 在 } x_{0} ext { 某邻域 } U_{delta}left(x_{0} ight) ext { 内可导 } Rightarrowleft{egin{array}{l} 1 . f(x) ext { 在 } U_{delta}left(x_{0} ight) ext { 内连续 } \ ext { 2. } f(x) ext { 在 } U_{delta}left(x_{0} ight) ext { 内极限存在 } \ ext { 3. } f(x) ext { 在 } U_{delta}left(x_{0} ight) ext { 内有定义 } \ ext { 4. } f^{prime}(x) ext { 在 } U_{delta}left(x_{0} ight) ext { 内连续 } \ ext { 5. } f^{prime}(x) ext { 在 } U_{delta}left(x_{0} ight) ext { 内极限存在 } \ ext { 6. } f^{prime}(x) ext { 在 } U_{delta}left(x_{0} ight) ext { 内有定义 } end{array} ight. f(x)在x0某邻域Uδ(x0)内可导1.f(x)在Uδ(x0)内连续2.f(x)在Uδ(x0)内极限存在3.f(x)在Uδ(x0)内有定义4.f′(x)在Uδ(x0)内连续5.f′(x)在Uδ(x0)内极限存在6.f′(x)在Uδ(x0)内有定义

03 某去心邻域内可导

f ( x ) 在 x 0 去心邻域 U ° δ ( x 0 ) 内可导 { 1. f ′ ( x ) 在 U ° δ ( x 0 ) 内有定义 2. f ( x ) 在 U ° δ ( x 0 ) 内连续 3. f ( x ) 在 U ° δ ( x 0 ) 内极限存在 4. f ′ ( x ) 在 U ° δ ( x 0 ) 内有定义 5. f ( x ) 在 x 0 有定义 6. f ( x ) 在 x 0 连续 7. f ( x ) 在 x 0 极限存在 8. f ( x ) 在 x 0 有定义 f(x) ext { 在 } x_{0} ext { 去心邻域 } stackrel{circ}{U}_{delta}left(x_{0} ight) ext { 内可导 } Rightarrowleft{egin{array}{l} ext { 1. } f^{prime}(x) ext { 在 } stackrel{circ}{U}_{delta}left(x_{0} ight) ext { 内有定义 } \ ext { 2. } f(x) ext { 在 } stackrel{circ}{U}_{delta}left(x_{0} ight) ext { 内连续 } \ ext { 3. } f(x) ext { 在 } stac

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值