beginendzrq

辣鸡……

复数的基本概念

概念

虚数单位:i2=1
复数的代数形式:z=a+bi
复数的模:|z|=|a+bi|=a2+b2
实部 a 虚部 b(没有i)
复数不能比较大小

复数的运算

加减:(a+bi)±(c+di)=(a±c)+(b±d)i
乘 : (a+bi)(c+di)=(acbd)+(bc+ad)i
除:a+bic+di=(a+bi)(cdi)(c+di)(cdi)=(ac+bd)+(bcad)ic2+d2
开方:
zn=r(cosθ+isinθ),则
z=rn[cos2kπ+θn+isin2kπ+θn] (k = 0,1,2…n - 1)
表示 n 个不同复数QAQ

常用算式

(1) 1i=i
(2) (1±i)2=±2i
(3) 1+i1i=i
(4) 1i1+i=i

共轭复数

当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,虚部不等于0的两个共轭复数也叫做共轭虚数。
表示为z¯(看掉那根横线就gg了啊
性质:
|a+bi|=|abi|
(a+bi)(abi)=a2+b2
和差积商的共轭等于共轭的和差积商

复数的辐角

复数可以写成:z=r(cosθ+isinθ)
θ 是 z 的辐角,记作:Arg(z),在 [0,2π) 的辐角称为辐角主值,记作:arg(z)
指数形式:z=r(cosθ+isinθ)=reiθ

欧拉恒等式

eix=cosx+isinx

x=π,这个式子就是
eπi+1=0

棣莫弗定理

设两个复数分别为:z1=r1(cosθ1+isinθ1)=r1eiθ1,z2=r2(cosθ2+isinθ2)=r2eiθ2,则:

z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]=r1r2ei(θ1+θ2)

因此 |z1z2|=r1r2,Arg(z1,z2)=Argz1+Argz2

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/beginendzrq/article/details/51564111
文章标签: 复数
个人分类: 数学其他
想对作者说点什么? 我来说一句

MATLAB实现复数的操作

2011年04月25日 41KB 下载

没有更多推荐了,返回首页

不良信息举报

复数的基本概念

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭