零基础AI开发系列教程:Dify私有化部署

Dify私有化部署

Dify是一款开源的大语言模型(LLM) 应用开发平台,它包含了AI应用的开发、部署、维护和优化的一整套功能,可以快速搭建生产级的AI应用。简单来说,Dify是一款人人都能用的AI开发工具箱,即使不懂编程也能上手,它能让你像搭积木一样,快速做出能写文案、知识问答、AI 工具调用、聊天等各种AI应用,代码完全开源可修改,用起来更安全放心,自主可控。

1. 在线使用 VS 私有化部署使用

之前有朋友问我,在线版和自己部署的有什么区别,其实在线版和自己部署的功能是一样的,那到底要不要自己部署?我这里给一个详细的对比,大家根据自己的情况选择适合自己的就行

Dify 在线版 vs Dify私有化部署

对比维度Dify 在线版Dify 私有化部署
访问性国内需科学上网(服务器位于海外,国内直接访问受限)✅ 无需科学上网,本地电脑或云服务器部署即可访问
部署成本零部署成本:无需服务器资源,注册即用需自备电脑或服务器:需自备电脑或购买云服务器
数据隐私数据存于云端:敏感数据可能受第三方平台安全策略影响数据完全自主:数据存储于自有服务器,符合企业数据合规要求(如《网络安全法》)
功能更新自动更新:实时获取最新功能(如新模型支持、工作流优化)需手动升级:需自行拉取GitHub代码更新,不升级版本就会滞后
模型兼容性直接调用国内外的大模型(如GPT-4、Claude、DeepSeek等),无需处理API代理灵活配置模型:可调用国产大模型(如DeepSeek、QWQ)或本地私有化模型
网络依赖强依赖外网:需稳定访问海外服务(国内需科学上网且可能延迟高)仅需内网环境:模型调用可通过代理隔离,业务系统完全本地化运行
维护难度免维护:由Dify官方负责服务器运维、安全防护等需技术团队支持:需自行处理服务器安全、备份、性能优化等问题
合规性跨国数据流动风险:涉及跨境数据传输可能违反国内监管要求完全合规:数据不出境,适配国产化替代需求(如信创环境)
适用场景个人开发者/小团队快速验证AI创意,**无敏感数据处理需求。 **数据安全性要求场景(如金融、政务、医疗),企业级生产环境、数据涉密或需国产化替代、长期稳定运行场景、需要自主可控。

Dify私有化部署最低配置

  • 硬件:最低2核CPU、4GB内存(根据使用情况调整)

ps:我是在线版也使用,也私有化部署了使用,用在线版无需自己升级就可以体验到最新发布的内容。而且应用也支持导入导出DSL文件,用来学习还是可以的。

Dify在线版访问地址:https://cloud.dify.ai

2. 下载源码

方式1:通过git克隆的方式下载,需要安装了Git。默认下载最新版,如果你想使用指定版本,可以在命令后加版本号,如 --branch 0.15.3

git clone https://github.com/langgenius/dify.git

方式2:直接访问github下载.ZIP压缩包,下载后解压。默认下载最新版,如果想使用历史版本,可以从Releases点进去下载指定版本
https://github.com/langgenius/dify/
image-20250323153748746

如果下载不下来也可以加群直接领取下载资料

3. 开始安装

我们采用Docker的方式安装
请确保已经安装了Docker环境,参考之前的文章:Docker Desktop 安装

进入源码里docker-compose.yaml所在目录下,运行命令:docker compose up -d,这个命令会启动在 docker-compose.yml 中定义的所有服务。由于需要拉取镜像,为避免拉取超时,请确保已配置国内镜像源加速列表,参考之前的文章:Docker Desktop 安装

我的目录是:E:\workspace\dify\docker\docker-compose.yaml

cd E:\workspace\dify\docker # 这里需要换成你自己的目录
cp .env.example .env  # 复制环境配置文件
docker compose up -d # 启动服务

Image

待所有服务都启动成功后,即可访问验证
image-20250323155804994

打开浏览器,访问 http://127.0.0.1/,默认打开Dify的设置管理员账户页
Image

设置管理员账户,这里邮箱和用户名可以随意填写,密码需要包含字母和数字,且长度不少于8位
Image

用上面设置的邮箱和密码登录
Image

至此,Dify私有化部署完成。

🔥《零基础小白AI实战教程:手把手教你打造专属的智能体》🚀 系列教程更新中!
✅ 已更新:AI实践虚拟化平台安装
✅ 已更新:Docker Desktop 安装
✅ 已更新:Ollama安装教程
✅ 已更新:DeepSeek私有化部署
✅ 已更新:Dify私有化部署
✅ 已更新:Dify + DeepSeek搭建本地私有化知识库
✅ 已更新:Dify应用类型的选择
✅ 已更新:Dify升级指南
✅ 已更新:Dify节点的详细介绍(上)
✅ 已更新:Dify节点的详细介绍(中)
✅ 已更新:Dify节点的详细介绍(下)

👉 关注公众号"北灵聊AI"获取最新更新
零基础AI学习交流群🤖,群里有全套教程的资料和源码,加入即可领取

### Dify 和 DeepSeek 技术文档与使用教程 #### 一、Dify 的介绍及其应用 Dify 是一款用于快速创建和部署 AI 应用程序的强大工具,支持开发者轻松集成各种大型语言模型 (LLM),并提供了一系列开箱即用的功能模块来加速开发过程。对于希望利用先进的人工智能技术提升业务效率的企业而言,Dify 提供了一个理想的解决方案[^1]。 #### 二、DeepSeek 功能特性概述 DeepSeek 则专注于为企业级用户提供高性能的知识检索服务,能够帮助企业建立私有化的知识库管理系统。它不仅具备强大的文本处理能力,还特别擅长于理解复杂语义结构以及挖掘深层次的信息关联,在此基础上实现了精准的内容匹配和服务推荐机制[^3]。 #### 三、基于 Dify 构建 DeepSeek 多模态增强 为了进一步拓展 DeepSeek 的应用场景范围,可以通过引入 Dify 来为其增添更多维度的数据感知能力和交互方式。具体来说就是采用 DeepSeek-R1 本作为核心推理引擎,并借助 Dify 实现对图像识别、语音合成等多种媒体类型的全面支持,从而形成一个多感官融合的信息查询平台[^2]。 #### 四、两者之间的对比分析 | 比较项 | Dify | DeepSeek | |------------|----------| | 主要用途 | 创建AI应用程序 | 建立企业级知识库 | | 集成模式 | 可与其他API无缝对接 | 支持多种主流LLM模型 | | 数据处理 | 强化多模态数据解析 | 文档解析 | | 用户体验优化 | 自定义UI设计 | 精准内容匹配 | #### 五、安装配置指南 针对想要尝试这两款产品的技术人员,以下是简要的操作指引: ##### 安装环境准备 确保服务器满足最低硬件要求,并完成 Python 环境搭建工作;同时建议预先熟悉 Docker 容器技术和 Kubernetes 编排框架的相关概念以便后续操作更加顺利。 ##### 下载源码包 访问官方网站获取最新本的软件分发文件,按照提示说明解压至指定目录下即可开始下一步设置流程。 ##### 初始化数据库 根据实际需求选择合适的数据库类型(MySQL 或 PostgreSQL),执行初始化脚本来创建必要的表单结构及初始数据集。 ##### 启动服务实例 通过命令行界面启动各个组件的服务进程,注意监听端口号是否冲突以及其他可能影响正常运行的因素存在。 ```bash docker-compose up -d ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值