Netapp数据恢复—Netapp数据恢复超牛案例分享

Netapp数据恢复环境&故障情况:
某公司一台服务器中一共有72块SAS硬盘。
工作人员误操作删除了十几个lun。需要恢复服务器中的数据。

Netapp数据恢复过程:
1、将故障服务器上磁盘编号后取出。由硬件工程师对所有磁盘进行硬件故障检测,未发现有硬盘存在物理坏道和其他硬件故障。将所有硬盘以只读方式做全盘镜像,镜像完成后将磁盘根据编号按照原样还原到原服务器中。后续的数据分析和数据恢复操作都基于镜像文件进行,避免对原始磁盘数据造成二次破坏。

2、服务器数据恢复工程师基于镜像文件分析所有硬盘底层数据,找到盘头位置的超级块,继续分析超级块信息得到磁盘组的起始块信息、磁盘组名称、逻辑组起始块号、raid编号等基本信息。
分析超级块:

3、通过分析得知每个数据块占8个扇区,数据块后附加64字节数据块描述信息。北亚企安数据恢复工程师根据这些信息判断出是校验盘的磁盘。恢复数据时需要将校检盘排除在外。
0x10:6字节为aggr_data块号
0x10处为FFFF表示校验块。
校验块描述信息样例:

4、根据每块磁盘8号扇区的磁盘信息以及磁盘末尾的RAID盘序表确定盘序。
首先确定各个磁盘所属aggr组,然后再判断组内盘序。数据指针跳转时不考虑校验盘,所以只取得数据盘的盘序即可。
aggr_raid(磁盘靠近尾部) 根据10H处的VCN块号判断磁盘组内各盘的顺序。
分析盘序表:

Tips:Netapp的节点分布在数量众多的数据块内,在数据块内又被统一组织为节点组。每个节点组的前64字节记录一些系统数据,然后用192字节为一项来记录各个文件节点。根据用户级别可分为两类:“MBFP”系统文件节点和“MBFI”用户文件节点,在数据恢复时一般只取“MBFI”节点组即可。
服务器节点样例图:

头部信息64字节
解析如下:(此头部为数据文件的节点文件块头部,大小为64字节)
标志,常量(“MBFP”为元文件的节点标志,“MBFI”为用户文件的节点标志)
根据更新序列值获取到最新节点。

5、解析节点中节点类型、逻辑块号、文件数量、文件大小、所占块数量、数据指针。获取节点在节点文件中的逻辑块号,从0开始计数。

6、获取目录项,并根据其节点编号,找到对应节点。
获取服务器内对应节点截图:

7、使用北亚企安自主开发的程序提取服务器数据。
a、扫描节点信息。
扫描服务器节点信息:

节点扫描类:

节点扫描程序完整流程:

在循环扫描完毕之后会将所有扫描到的MBFP、MBFI和DOC数据块分别写入到三个文件内,用于后续处理。
b、将节点信息导入到数据库。
此模块主要负责将ScanNode扫描得到的MBFI和MBFP、Dir存入数据库以备后续使用。
MBFI导入数据库整体流程:

函数执行完毕后可以查看数据库。
节点导入信息:

Netapp在更改inode节点时不会直接覆盖而是重新分配inode进行写入。单个文件的节点node_uid唯一不变,mbfi_usn会随着节点的变化而增大(正常情况下提取某个文件时使用usn最大的节点)。一般情况下存储划分出的单个节点会作为LUN映射到服务器使用,根据file_size可以确定这个文件的大小,按照文件大小分组后再选取usn最大值的节点,跳转到MBFI文件的offset值偏移位置,取出节点。
节点样例图示:

c、提取文件
在获取到要提取的文件的Node之后,开始提取块设备文件。
提取块设备文件:

初始化完毕后,开始提取文件的各级MAP。本次提取过程中文件大小均大于1T,MAP层级为4,所以需要提取4次。第一级MAP默认只占用1个块,所以在程序内直接提取,后三级MAP在GetAllMap函数内进行提取。通过块号计算数据块位置时,由于NetApp使用JBOD组织LVM,直接用块号除以每块磁盘上的块数就可以得到当前块所在的磁盘序号(计算机整数除法,丢弃小数邠);再使用块号取余块数,得到数据块在此磁盘上的物理块号,物理块号乘以块大小,得到数据块偏移位置。

8、块设备文件系统解析
a、本案例中的块设备5T大小的lun使用的是aix小机的jfs2文件系统。因此要解析jfs2文件系统,提取里面的数据库备份文件。解析lvm。
7扇区记录lvm描述信息,获取pv大小和pv序号。
类似找到vg描述区,获取lv数和pv数,找到pv描述区,解析pp序号和pp数。
解析文件系统块信息:

LV类型及LV挂载信息区域:

b、解析8个1T大小的lun组成的oralce ASM文件系统,提取其中的数据库文件。
添加8个lT大小的lun。

解析ASM文件系统,提取出数据库文件。

9、数据恢复工程师对恢复出来的数据进行检测后没有发现异常。让用户方工程师进行验证,经过验证确认恢复出来的数据完整有效。本次netapp数据恢复工作完成。

内容概要:本文围绕基于支持向量机的电力短期负荷预测方法展开基于支持向量机的电力短期负荷预测方法研究——最小二乘支持向量机、标准粒子群算法支持向量机与改进粒子群算法支持向量机的对比分析(Matlab代码实现)研究,重点对比分析了三种方法:最小二乘支持向量机(LSSVM)、标准粒子群算法优化的支持向量机(PSO-SVM)以及改进粒子群算法优化的支持向量机(IPSO-SVM)。文章详细介绍了各模型的构建过程与优化机制,并通过Matlab代码实现对电力负荷数据进行预测,评估不同方法在预测精度、收敛速度和稳定性方面的性能差异。研究旨在为电力系统调度提供高精度的短期负荷预测方案,提升电网运行效率与可靠性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的科研人员、电气工程及相关专业的研究生或高年级本科生;对机器学习在能源领域应用感兴趣的技术人员。; 使用场景及目标:①应用于电力系统短期负荷预测的实际建模与仿真;②比较不同优化算法对支持向量机预测性能的影响;③为相关课题研究提供可复现的代码参考和技术路线支持。; 阅读建议:建议读者结合文中提供的Matlab代码,深入理解每种支持向量机模型的参数设置与优化流程,动手实践以掌握算法细节,并可通过更换数据集进一步验证模型泛化能力。
【源码免费下载链接】:https://renmaiwang.cn/s/qaiji 18、MapReduce的计数器与通过MapReduce读取_写入数据库示例网址: input files to process”表示处理的总输入文件数量,“number of splits”指示文件被分割成多少个块进行处理,“Running job”显示作业的状态等。自定义计数器则是开发者根据实际需求创建的,用于跟踪特定任务的特定指标。开发者可以在Mapper或Reducer类中增加自定义计数器,然后在代码中增加计数器的值。这样,当作业完成后,可以通过查看计数器的值来分析程序的行为和性能。接下来,我们将讨论如何通过MapReduce与数据库交互,尤其是MySQL数据库。在大数据场景下,有时需要将MapReduce处理的结果存储到关系型数据库中,或者从数据库中读取数据进行处理。Hadoop提供了JDBC(Java Database Connectivity)接口,使得MapReduce作业能够与数据库进行连接和操作。要实现MapReduce读取数据库,首先需要在Mapper类中加载数据库驱动并建立连接。然后,可以在map()方法中使用SQL查询获取所需数据。在Reduce阶段,可以对数据进行进一步处理和聚合,最后将结果写入到数据库中。对于写入数据库,通常在Reducer类的reduce()方法或cleanup()方法中进行,将处理后的数据转换为适合数据库存储的格式,然后通过JDBC API执行插入、更新或删除等操作。需要注意的是,由于MapReduce作业可能涉及大量的数据写入,因此需要考虑数据库的并发处理能力和性能优化策略。总结一下,MapReduce的计数器提供了强大的监控和调试能力,而通过MapReduce与数据库的交互则扩展了大数据处理的应用场景。开发者可以根据需求利用计数器来优化作业
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值