Oracle-表连接简介
表的连接是指在一个SQL语句中通过表与表之间的关联,从一个或多个表检索出相关的数据。连接是通过SQL语句中FROM从句的多个表名及WHERE从句里定义的表之间的连接条件来实现的。如果一个SQL语句的关联表超过两个,那么连接的顺序如何呢?ORACLE首先连接其中的两个表,产生一个结果集;然后将产生的结果集与下一个表进行关联....继续这个过程,直到所有的表都连接完成;最后产生所需的数据。
嵌套循环连接(NESTED LOOP JOIN)
排序合并连接(SORT MERGE JOIN)
哈希连接(HASH JOIN)
嵌套循环连接的内部处理流程:
1) Oracle 优化器根据基于规则RBO或基于成本CBO的原则,选择两个表中的一个作为驱动表,并指定其为外部表。
2) Oracle 优化器再将另外一个表指定为内部表。
3) 从外部表中读第一行,然后和内部表中的数据逐一进行对比,所有匹配的记录放在结果集中。
4) 读取外部表中的第二行,再和内部表中的数据逐一进行对比,所有匹配的记录添加到结果集中。
5) 重复上述步骤,直到外部表中的所有纪录全部处理完。
6) 最后产生满足要求的结果集。
在驱动表(外部表)较小、或者内部表已连接的列有惟一的索引或高度可选的非惟一索引时, 嵌套循环连接效果是比较理想的。嵌套循环连接比其他连接方法有优势,它可以快速地从结果集中提取第一批记录,而不用等待整个结果集完全确定下来。这样,在理想情况下,终端用户就可以通过查询屏幕查看第一批记录,而在同时读取其他记录。不管如何定义连接的条件或者模式,都可以使用嵌套循环连接,所以嵌套循环连接是非常灵活的。
然而,如果内部行源表(读取的第二张表)已连接的列上不包含索引或者索引不是高度可选时, 嵌套循环连接效率是很低的。如果驱动表的记录非常庞大时,其他的连接方法可能更加有效。
可以在SQL语句中添加HINTS(/*+ use_nl(a b) */),强制ORACLE优化器产生嵌套循环连接的执行计划。通过查询SQL语句的执行计划可以看出哪个表是外部表,哪个为内部表。
当内存能够提供足够的空间时,哈希连接是Oracle优化器通常的选择。哈希连接中,优化器根据统计信息,首先选择两个表中的小表,在内存中建立这张表的基于连接键的哈希表;优化器再扫描表连接中的大表,将大表中的数据与哈希表进行比较,如果有相关联的数据,则将数据添加到结果集中。
当哈希表构建完成后,进行下面的处理:
1) 第二个大表进行扫描
2) 如果大表不能完全cache到可用内存的时候,大表会分成很多分区
3) 大表的第一个分区cache到内存
4) 对大表第一个分区的数据进行扫描,并与哈希表进行比较,如果有匹配的纪录,添加到结果集里
5) 与第一个分区一样,其它的分区也类似处理。
6) 所有的分区处理完后,ORACLE对产生的结果集进行归并,汇总,产生最终的结果。
当连接的两个表是用等值连接并且表的数据量比较大时,优化器才可能采用哈希连接。只有在数据库初始化参数HASH_JOIN_ENABLED设为True,并且为参数PGA_AGGREGATE_TARGET设置了一个足够大的值的时候,Oracle才会使用哈希连接。HASH_AREA_SIZE是向下兼容的参数,但在Oracle9i之前的版本中应当使用HASH_AREA_SIZE。当表连接中的小表能够完全cache到可用内存的时候,哈希连接的效果最佳。哈希连接的成本只是两个表从硬盘读入到内存的成本。
但是,当哈希表过大或可用内存有限,哈希表不能完全CACHE到内存。随着满足连接条件的结果集的增加,可用内存会随之下降,这时已经CACHE到内存的数据可能会重新写回到硬盘去。如果出现这种情况,系统的性能就会下降。
可以在SQL语句中添加HINTS(/*+ use_hash(a b)*/),强制ORACLE优化器产生哈希连接的执行计划。
排序合并连接内部处理的流程:
1) 优化器判断第一个源表是否已经排序,如果已经排序,则到第3步,否则到第2步。
2) 第一个源表排序
3) 优化器判断第二个源表是否已经排序,如果已经排序,则到第5步,否则到第4步。
4) 第二个源表排序
5) 已经排过序的两个源表进行合并操作,并生成最终的结果集。
在缺乏数据的选择性或者可用的索引时,或者两个源表都过于庞大(所选的数据超过表记录数的5%)时,排序合并连接将比嵌套循环连更加高效。
排列合并连接需要比较大的临时内存块用于排序,这将导致在临时表空间占用更多的内存和磁盘I/O。可以在SQL语句中添加HINTS(/*+use_merge(a b) */),强制ORACLE优化器产生排序合并连接。
表连接的比较:
Oracle的优化器的RBO和CBO方式:
1、基于规则的优化方式(Rule-Based Optimization,简称为RBO)
优化器在分析SQL语句时,所遵循的是Oracle内部预定的一些规则,对数据是不敏感的。它只借助少量的信息来决定一个sql语句的执行计划,包括:
1)sql语句本身
2)sql中涉及到的table、view、index等的基本信息
3)本地数据库中数据字典中的信息(远程数据库数据字典信息对RBO是无效的)
例如:我们常见的,当一个where子句中的一列有索引时去走索引。但是需要注意,走索引不一定就是优的,比如一个表只有两行数据,一次IO就可以完成全表的检索,而此时走索引时则需要两次IO,这时全表扫描(full table scan)的效率更优。
2、基于代价的优化方式(Cost-Based Optimization,简称为CBO)
它是看语句的代价(Cost),通过代价引擎来估计每个执行计划所需的代价,该代价将每个执行计划所耗费的资源进行量化,CBO根据这个代价选择出最优的执行计划。一个查询所耗费的资源可分为三部分:I/O代价、CPU代价、NETWORK代价。I/O是指把数据从磁盘读入内存时所需代价(该代价是查询所需最主要的,所以在优化时一个基本原则就是降低I/O总次数);CPU代价是指处理内存中数据所需的代价,数据一旦读入内存,当我们识别出我们所要的数据后,会在这些数据上执行排序(sort)或连接(join)操作,这需要消耗CPU资源;对于访问远程节点来说,network代价的花费也是很大的。
优化器在判断是否用这种方式时,主要参照的是表及索引的统计信息。统计信息给出表的大小、有多少行、每行的长度等信息。这些统计信息起初在库内是没有的,是做analyze后才出现的,很多的时侯过期统计信息会令优化器做出一个错误的执行计划,因些应及时更新这些信息(dbms_stat.analyze)。
如星型连接排列查询,哈希连接查询,函数索引,和并行查询等一些技术都是基于CBD的。