MongoDB的MapReduce相当于MySql的“group by”,所以在MongoDB上使用Map/Reduce进行并行统计比较容易。
使用MapReduce要实现两个函数Map函数和Reduce函数,Map函数使用emit(key,value),遍历collection中的所有的记录,将key和value传递给Reduce函数进行处理。Map函数和Reduce函数可以使用JavaScript来实现,可以通过db.runCommand或mapReduce命令来执行一个MaoReduce的操作:
db.runCommand(
{mapreduce:<colleciont>,
map:<mapfunction>,
reduce:<reducefunction>
[,query:<query filter object>]
[,sort:<sorts the input objects using this key. Useful for optimization, like sorting by thie emit key for fewer reduces>]
[,kunut:<number of objects to return from collection>]
[,out:<see output options below>]
[,keeptemp:<true|false>]
[,finalize:<finalizefunction>]
[,scope:<object where fields to into javascript global scope>]
[,verbose:true]
}
};
参数说明:
mapreduce:要操作的目标集合。
map:映射函数(生成键值对序列,作为reduce函数参数)。
reduce:统计函数。
query:目标记录过滤。
sort:目标记录排序。
limit:限制目标记录的数量。
out:统计结果存放集合(不知道ing则使用临时集合,客户端断开后自动删除)。
keeptemp:是否保留临时集合。
finalize:最终处理函数(对reduce返回结果进行最终整理后存入结果集合)。
scope:向map、reduce、finalize导入外部变量。
verbose:显示详细的时间统计信息。
Map函数使用emit(key,value)返回键值对,使用this访问当前待处理的Document。
Reduce函数姐都的参数类似Group效果,将Map返回的键值序列组合成{key,[value1,value2,value3,value4]}传递给reduce。reduce函数对这些values进行统计操作,返回结果可以使用JSON Object。
利用finalize()我们可以对reduce()的结果做进一步处理。
Mongodb MapReduce
最新推荐文章于 2024-07-25 11:48:36 发布

178

被折叠的 条评论
为什么被折叠?



