绎岚科技
码龄20年
关注
提问 私信
  • 博客:210,677
    社区:312
    动态:5
    210,994
    总访问量
  • 185
    原创
  • 6,681
    排名
  • 3,273
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:Never too old to learn

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2004-08-25
博客简介:

绎岚科技的博客

博客描述:
Share solution to hard problems
查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,548
    当月
    9
个人成就
  • 获得4,902次点赞
  • 内容获得6次评论
  • 获得3,472次收藏
创作历程
  • 185篇
    2024年
成就勋章
TA的专栏
  • 算法
    98篇
  • 机器学习
    167篇
  • 人工智能
    1篇
  • 深度学习
    138篇
兴趣领域 设置
  • 编程语言
    pythonjavac语言javascript
  • 数据结构与算法
    算法数据结构
  • 大数据
    hadoop
  • 前端
    jsonjavascriptjquerycssajax正则表达式chromesafaribootstrapcss3echartsnode.jsvue.jspostmanelementuies6npmchrome devtoolswebpack前端框架anti-design-vue
  • 后端
    mvcsqlmysqltomcatspringnginxrabbitmqnode.jsspring boot爬虫后端restful架构分布式中间件spring cloudhystrixlogback
  • 云原生
    dockereurekajenkinsdevopskubernetes微服务openstack
  • 人工智能
    机器学习人工智能深度学习
  • 操作系统
    linuxubuntuwindowscentosgnumacos
  • 设计模式
    设计模式
  • 云平台
    云计算azure七牛云存储百度云腾讯云阿里云aws华为云
  • 软件工程
    githubgitumljira软件工程源代码管理代码规范设计模式设计规范
  • 数学
    线性代数矩阵概率论抽象代数几何学数学建模
  • 运维
    linuxubuntuapache负载均衡centosnginxdocker服务器vagrantjenkinsdevopsdebian自动化kubernetes
  • 服务器
    linuxubuntucentos
  • 非IT技术
    金融科技学习美食风景生活
  • IT工具
    wpsfoxmailonenotexmindteamviewer企业微信钉钉腾讯会议福昕阅读器飞书icloudeverything有道云笔记
  • 开源
    githubgitlabgitee
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 视频
  • 关注/订阅/互动
搜TA的内容
搜索 取消

通用项目工程的过程视图概览

项目视图采用过程方法实现项目工程过程视图,目的在于演示如何在项目中通过组合标准的过程、活动和任务,对选定特别关注的产品特性的实现过程进行集中展示。
原创
发布博客 14 小时前 ·
553 阅读 ·
4 点赞 ·
0 评论 ·
17 收藏

深度生成模型 - 深度信念网络(DBN)篇

深度信念网络(Deep Belief Networks,DBN)作为深度学习领域的一个重要里程碑,自2006年由Geoffrey Hinton及其研究小组提出以来,一直受到广泛的关注和研究。DBN由多层受限玻尔兹曼机(Restricted Boltzmann Machines,RBMs)堆叠而成,旨在通过无监督学习有效地训练多层神经网络。这种网络结构通过逐层训练RBMs来学习数据的层次结构表示,每一层都学习数据中的高级抽象特征。
原创
发布博客 2024.10.30 ·
1476 阅读 ·
52 点赞 ·
0 评论 ·
42 收藏

深度生成模型 - 受限玻尔兹曼机(RBM)篇

受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)是深度学习领域中的一种重要模型,其起源于统计物理学,由保罗·斯模棱斯基最初提出并命名为簧风琴(Harmonium)。随后,在杰弗里·辛顿及其合作者的推动下,受限玻尔兹曼机因其独特的结构和高效的训练算法而逐渐受到广泛关注。
原创
发布博客 2024.10.29 ·
864 阅读 ·
25 点赞 ·
0 评论 ·
19 收藏

深度生成模型 - 玻尔兹曼机(BM)篇

玻尔兹曼机(Boltzmann Machine, BM)作为计算机科学技术领域的一个重要概念,自2018年被全国科学技术名词审定委员会公布以来,便因其独特的网络结构和训练方式而受到广泛关注。作为一种由二值随机神经元构成的两层对称连接神经网络,玻尔兹曼机不仅借鉴了模拟退火的思想,还在学习(训练)阶段和运行(预测)阶段展现了与其他神经网络截然不同的特性。
原创
发布博客 2024.10.28 ·
564 阅读 ·
15 点赞 ·
0 评论 ·
13 收藏

深度生成模型 - 引言篇

在人工智能的广阔领域中,深度生成模型作为一类强大的工具,正逐步引领着机器学习技术的新一轮变革。这些模型不仅能够从复杂的数据分布中学习到潜在的表示,还能够生成与训练数据相似甚至创新的新样本。深度生成模型的发展,不仅拓宽了我们对数据内在规律的理解,更为诸多实际应用场景提供了前所未有的解决方案。
原创
发布博客 2024.10.27 ·
347 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

近似推断 - 学习的近似推理篇

在人工智能与机器学习的浪潮中,学习的近似推理(Approximate Inference for Learning)正逐渐成为推动技术进步的关键力量。面对日益复杂的数据模型和庞大的数据集,传统的精确推理方法往往难以在有限的时间和资源内给出满意的答案。因此,近似推理作为一种折衷而高效的解决方案,应运而生并逐渐受到广泛关注。
原创
发布博客 2024.10.26 ·
1299 阅读 ·
45 点赞 ·
0 评论 ·
26 收藏

近似推断 - 变分推断和学习篇

在数据科学和机器学习的广阔领域中,变分推断(Variational Inference, VI)作为一种强大的近似推断方法,正逐渐崭露头角。随着大数据时代的到来,我们面临的数据集越来越庞大且复杂,传统的精确推断方法往往计算成本高昂,甚至在某些情况下变得不切实际。因此,变分推断以其高效、可扩展的特性,成为了处理大规模数据和复杂模型的首选方法。
原创
发布博客 2024.10.25 ·
996 阅读 ·
28 点赞 ·
0 评论 ·
11 收藏

近似推断 - 最大后验推断和稀疏编码篇

在深度学习的广阔领域中,近似推断扮演着至关重要的角色。当面对复杂的概率模型时,精确推断往往难以实施,因此我们需要借助近似推断来寻找解决方案。其中,最大后验推断(MAP)和稀疏编码是两种极具代表性的方法。
原创
发布博客 2024.10.24 ·
825 阅读 ·
8 点赞 ·
0 评论 ·
27 收藏

近似推断 - 期望最大化(EM)篇

近似推断是统计学和机器学习中一个至关重要的领域,尤其在处理复杂模型和不完全数据时显得尤为重要。期望最大化(Expectation Maximization,简称EM)算法是近似推断中的一种重要方法,它专门用于解决含有隐变量的参数估计问题。在实际应用中,我们常常面临数据不完整或属性缺失的情况,这时传统的参数估计方法便显得力不从心。而EM算法通过迭代的方式,巧妙地利用现有数据对隐变量进行估计,并据此优化模型参数,从而为我们提供了一种有效的解决方案。
原创
发布博客 2024.10.23 ·
626 阅读 ·
20 点赞 ·
0 评论 ·
23 收藏

近似推断 - 推断是一个优化问题篇

在数据分析与机器学习的广阔领域中,近似推断占据着举足轻重的地位。当我们面对复杂的数据模型和庞大的数据集时,直接进行精确推断往往计算成本高昂,甚至在某些情况下变得不切实际。因此,近似推断作为一种折衷方案应运而生,旨在以相对较低的计算代价获得接近精确的推断结果。而推断问题,本质上可以视为一个优化问题,其核心在于如何在给定的约束条件下,找到最优的近似解。
原创
发布博客 2024.10.22 ·
1455 阅读 ·
41 点赞 ·
0 评论 ·
50 收藏

近似推断 - 引言篇

在人工智能的浩瀚领域中,深度学习如同一颗璀璨的明星,引领着技术的前沿。作为其核心组成部分,近似推断在深度学习的模型训练与预测中扮演着至关重要的角色。近似推断,简而言之,是在面对复杂、高维的概率模型时,寻找一种高效、近似的计算方法来替代精确但计算成本高昂的推断过程。随着大数据时代的到来和计算能力的飞跃,深度学习模型变得越来越复杂,传统的精确推断方法往往难以应对这种复杂性,因此,近似推断技术应运而生,并逐渐发展成为深度学习领域不可或缺的一部分。
原创
发布博客 2024.10.21 ·
1363 阅读 ·
24 点赞 ·
0 评论 ·
52 收藏

面对配分函数 - 估计配分函数篇

配分函数,作为统计物理和热力学中的核心概念,扮演着举足轻重的角色。它不仅是系统微观状态与宏观性质之间的桥梁,更是我们理解和预测物质宏观行为的关键工具。配分函数包含了系统所有可能微观状态的统计信息,通过对其进行分析和计算,我们可以得出系统的能量、熵、自由能等重要热力学量,进而揭示系统的相变、稳定性等宏观特性。然而,配分函数的精确计算往往是一项艰巨的任务,特别是对于复杂系统而言。因此,估计配分函数成为了研究者们关注的焦点。
原创
发布博客 2024.10.20 ·
1361 阅读 ·
36 点赞 ·
0 评论 ·
23 收藏

面对配分函数 - 噪扰对比估计(NCE)篇

配分函数(也叫归一化因子)在概率分布和统计模型的计算中扮演着至关重要的角色。然而,在许多实际应用中,特别是自然语言处理和图像处理领域,配分函数的计算往往异常复杂且难以直接实现。为了解决这一难题,噪音对比估计(Noise Contrastive Estimation,NCE)应运而生。NCE是一种巧妙的统计模型估计方法,它能够在无法直接计算配分函数的情况下,估算出概率分布的参数。
原创
发布博客 2024.10.19 ·
1830 阅读 ·
42 点赞 ·
0 评论 ·
33 收藏

面对配分函数 - 去噪得分匹配篇

去噪得分匹配作为一种创新的深度学习技术,为我们提供了一种绕过复杂配分函数、有效估计数据分布的新途径。通过引入噪声并拟合其log梯度,去噪得分匹配不仅简化了计算过程,还提高了模型的泛化性能和样本生成质量。去噪得分匹配的成功应用,不仅展示了其在处理复杂数据分布方面的优势,也为未来的研究提供了新的思路和方向。例如,我们可以进一步探索不同类型的噪声对模型性能的影响,以及如何将去噪得分匹配与其他深度学习技术相结合,以构建更加高效和准确的模型。
原创
发布博客 2024.10.18 ·
65 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

面对配分函数 - 得分匹配与比率匹配篇

配分函数在统计物理学和机器学习中都扮演着至关重要的角色。在统计物理学中,配分函数描述了系统在热平衡状态下的概率分布,包含了系统的许多重要信息。而在机器学习中,尤其是深度学习领域,配分函数的概念同样重要,尽管其应用方式和物理领域有所不同。得分匹配(Score Matching, SM)和比率匹配(Ratio Matching, RM)是两种绕开直接估计配分函数或其导数的方法,它们在模型训练中具有独特的优势。
原创
发布博客 2024.10.17 ·
1681 阅读 ·
37 点赞 ·
0 评论 ·
25 收藏

面对配分函数 - 伪似然篇

配分函数在统计物理和概率论中扮演着至关重要的角色,它描述了系统在不同状态下的概率分布。然而,直接处理配分函数往往面临计算上的挑战。为了绕开这一难题,伪似然方法应运而生。伪似然是一种基于条件概率比率的统计推断方法,它能够在不直接计算配分函数的情况下,对参数进行有效的估计。这种方法特别适用于那些配分函数难以直接求解或计算成本高昂的模型,如某些复杂的无向概率模型。
原创
发布博客 2024.10.16 ·
832 阅读 ·
22 点赞 ·
0 评论 ·
18 收藏

面对配分函数 - 随机最大似然和对比散度篇

在统计学和机器学习的领域中,随机最大似然(Stochastic Maximum Likelihood)和对比散度(Contrastive Divergence)是两种重要的方法,它们在无向模型学习中扮演着关键角色。随机最大似然主要用于估计满足给定样本分布的参数,通过最大化似然函数来找到最可能的参数值。这一过程通常涉及正相和负相的平衡,其中正相基于真实数据的期望,而负相则基于模型分布的期望。然而,随机最大似然在某些情况下可能面临计算成本高和效率低的问题。
原创
发布博客 2024.10.15 ·
703 阅读 ·
16 点赞 ·
0 评论 ·
25 收藏

面对配分函数 - 对数似然梯度篇

在机器学习和统计学领域,对数似然梯度是一种至关重要的优化方法,特别是在处理复杂概率模型时。对数似然梯度方法的核心在于通过最大化对数似然函数来求解模型参数,这一方法广泛应用于各种参数估计问题中。对数似然梯度方法之所以受到青睐,是因为对数似然函数通常具有较为简单的形式,且其梯度易于计算,从而便于使用梯度上升算法进行求解。
原创
发布博客 2024.10.14 ·
1487 阅读 ·
39 点赞 ·
0 评论 ·
41 收藏

面对配分函数 - 引言篇

深度学习,作为人工智能领域的一个核心分支,近年来在图像识别、语音识别、自然语言处理等多个方面取得了显著进展。其核心思想是通过构建深层的神经网络模型,模拟人脑的学习机制,从而实现对复杂数据的自动特征提取和高效处理。然而,在深度学习的研究与实践中,配分函数(Partition Function)作为一个重要的数学概念,其地位与作用往往被忽视或低估。
原创
发布博客 2024.10.13 ·
1347 阅读 ·
34 点赞 ·
0 评论 ·
14 收藏

蒙特卡罗方法 - 不同的峰值之间的混合挑战篇

蒙特卡罗方法,也称为统计模拟法或统计试验法,是一种以概率统计理论为基础的数值模拟方法。自20世纪40年代中期提出以来,它因能灵活处理复杂计算问题而广泛应用于多个领域,如金融工程学、宏观经济学和计算物理学等。该方法的核心思想是通过构造概率模型或随机过程,并利用随机数进行模拟试验,以求解问题的统计特性或期望值。然而,在应用蒙特卡罗方法时,特别是在处理具有不同峰值的复杂问题时,常常面临混合挑战。
原创
发布博客 2024.10.12 ·
840 阅读 ·
22 点赞 ·
0 评论 ·
18 收藏
加载更多