- 博客(185)
- 收藏
- 关注
原创 通用项目工程的过程视图概览
项目视图采用过程方法实现项目工程过程视图,目的在于演示如何在项目中通过组合标准的过程、活动和任务,对选定特别关注的产品特性的实现过程进行集中展示。
2024-11-13 06:15:00
553
原创 深度生成模型 - 深度信念网络(DBN)篇
深度信念网络(Deep Belief Networks,DBN)作为深度学习领域的一个重要里程碑,自2006年由Geoffrey Hinton及其研究小组提出以来,一直受到广泛的关注和研究。DBN由多层受限玻尔兹曼机(Restricted Boltzmann Machines,RBMs)堆叠而成,旨在通过无监督学习有效地训练多层神经网络。这种网络结构通过逐层训练RBMs来学习数据的层次结构表示,每一层都学习数据中的高级抽象特征。
2024-10-30 06:30:00
1476
原创 深度生成模型 - 受限玻尔兹曼机(RBM)篇
受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)是深度学习领域中的一种重要模型,其起源于统计物理学,由保罗·斯模棱斯基最初提出并命名为簧风琴(Harmonium)。随后,在杰弗里·辛顿及其合作者的推动下,受限玻尔兹曼机因其独特的结构和高效的训练算法而逐渐受到广泛关注。
2024-10-29 06:30:00
864
原创 深度生成模型 - 玻尔兹曼机(BM)篇
玻尔兹曼机(Boltzmann Machine, BM)作为计算机科学技术领域的一个重要概念,自2018年被全国科学技术名词审定委员会公布以来,便因其独特的网络结构和训练方式而受到广泛关注。作为一种由二值随机神经元构成的两层对称连接神经网络,玻尔兹曼机不仅借鉴了模拟退火的思想,还在学习(训练)阶段和运行(预测)阶段展现了与其他神经网络截然不同的特性。
2024-10-28 06:30:00
564
原创 深度生成模型 - 引言篇
在人工智能的广阔领域中,深度生成模型作为一类强大的工具,正逐步引领着机器学习技术的新一轮变革。这些模型不仅能够从复杂的数据分布中学习到潜在的表示,还能够生成与训练数据相似甚至创新的新样本。深度生成模型的发展,不仅拓宽了我们对数据内在规律的理解,更为诸多实际应用场景提供了前所未有的解决方案。
2024-10-27 06:30:00
347
原创 近似推断 - 学习的近似推理篇
在人工智能与机器学习的浪潮中,学习的近似推理(Approximate Inference for Learning)正逐渐成为推动技术进步的关键力量。面对日益复杂的数据模型和庞大的数据集,传统的精确推理方法往往难以在有限的时间和资源内给出满意的答案。因此,近似推理作为一种折衷而高效的解决方案,应运而生并逐渐受到广泛关注。
2024-10-26 06:30:00
1299
原创 近似推断 - 变分推断和学习篇
在数据科学和机器学习的广阔领域中,变分推断(Variational Inference, VI)作为一种强大的近似推断方法,正逐渐崭露头角。随着大数据时代的到来,我们面临的数据集越来越庞大且复杂,传统的精确推断方法往往计算成本高昂,甚至在某些情况下变得不切实际。因此,变分推断以其高效、可扩展的特性,成为了处理大规模数据和复杂模型的首选方法。
2024-10-25 06:30:00
996
原创 近似推断 - 最大后验推断和稀疏编码篇
在深度学习的广阔领域中,近似推断扮演着至关重要的角色。当面对复杂的概率模型时,精确推断往往难以实施,因此我们需要借助近似推断来寻找解决方案。其中,最大后验推断(MAP)和稀疏编码是两种极具代表性的方法。
2024-10-24 06:30:00
825
原创 近似推断 - 期望最大化(EM)篇
近似推断是统计学和机器学习中一个至关重要的领域,尤其在处理复杂模型和不完全数据时显得尤为重要。期望最大化(Expectation Maximization,简称EM)算法是近似推断中的一种重要方法,它专门用于解决含有隐变量的参数估计问题。在实际应用中,我们常常面临数据不完整或属性缺失的情况,这时传统的参数估计方法便显得力不从心。而EM算法通过迭代的方式,巧妙地利用现有数据对隐变量进行估计,并据此优化模型参数,从而为我们提供了一种有效的解决方案。
2024-10-23 06:30:00
626
原创 近似推断 - 推断是一个优化问题篇
在数据分析与机器学习的广阔领域中,近似推断占据着举足轻重的地位。当我们面对复杂的数据模型和庞大的数据集时,直接进行精确推断往往计算成本高昂,甚至在某些情况下变得不切实际。因此,近似推断作为一种折衷方案应运而生,旨在以相对较低的计算代价获得接近精确的推断结果。而推断问题,本质上可以视为一个优化问题,其核心在于如何在给定的约束条件下,找到最优的近似解。
2024-10-22 06:30:00
1455
原创 近似推断 - 引言篇
在人工智能的浩瀚领域中,深度学习如同一颗璀璨的明星,引领着技术的前沿。作为其核心组成部分,近似推断在深度学习的模型训练与预测中扮演着至关重要的角色。近似推断,简而言之,是在面对复杂、高维的概率模型时,寻找一种高效、近似的计算方法来替代精确但计算成本高昂的推断过程。随着大数据时代的到来和计算能力的飞跃,深度学习模型变得越来越复杂,传统的精确推断方法往往难以应对这种复杂性,因此,近似推断技术应运而生,并逐渐发展成为深度学习领域不可或缺的一部分。
2024-10-21 06:15:00
1363
原创 面对配分函数 - 估计配分函数篇
配分函数,作为统计物理和热力学中的核心概念,扮演着举足轻重的角色。它不仅是系统微观状态与宏观性质之间的桥梁,更是我们理解和预测物质宏观行为的关键工具。配分函数包含了系统所有可能微观状态的统计信息,通过对其进行分析和计算,我们可以得出系统的能量、熵、自由能等重要热力学量,进而揭示系统的相变、稳定性等宏观特性。然而,配分函数的精确计算往往是一项艰巨的任务,特别是对于复杂系统而言。因此,估计配分函数成为了研究者们关注的焦点。
2024-10-20 06:30:00
1361
原创 面对配分函数 - 噪扰对比估计(NCE)篇
配分函数(也叫归一化因子)在概率分布和统计模型的计算中扮演着至关重要的角色。然而,在许多实际应用中,特别是自然语言处理和图像处理领域,配分函数的计算往往异常复杂且难以直接实现。为了解决这一难题,噪音对比估计(Noise Contrastive Estimation,NCE)应运而生。NCE是一种巧妙的统计模型估计方法,它能够在无法直接计算配分函数的情况下,估算出概率分布的参数。
2024-10-19 06:30:00
1830
原创 面对配分函数 - 去噪得分匹配篇
去噪得分匹配作为一种创新的深度学习技术,为我们提供了一种绕过复杂配分函数、有效估计数据分布的新途径。通过引入噪声并拟合其log梯度,去噪得分匹配不仅简化了计算过程,还提高了模型的泛化性能和样本生成质量。去噪得分匹配的成功应用,不仅展示了其在处理复杂数据分布方面的优势,也为未来的研究提供了新的思路和方向。例如,我们可以进一步探索不同类型的噪声对模型性能的影响,以及如何将去噪得分匹配与其他深度学习技术相结合,以构建更加高效和准确的模型。
2024-10-18 06:30:00
65
原创 面对配分函数 - 得分匹配与比率匹配篇
配分函数在统计物理学和机器学习中都扮演着至关重要的角色。在统计物理学中,配分函数描述了系统在热平衡状态下的概率分布,包含了系统的许多重要信息。而在机器学习中,尤其是深度学习领域,配分函数的概念同样重要,尽管其应用方式和物理领域有所不同。得分匹配(Score Matching, SM)和比率匹配(Ratio Matching, RM)是两种绕开直接估计配分函数或其导数的方法,它们在模型训练中具有独特的优势。
2024-10-17 06:30:00
1681
原创 面对配分函数 - 伪似然篇
配分函数在统计物理和概率论中扮演着至关重要的角色,它描述了系统在不同状态下的概率分布。然而,直接处理配分函数往往面临计算上的挑战。为了绕开这一难题,伪似然方法应运而生。伪似然是一种基于条件概率比率的统计推断方法,它能够在不直接计算配分函数的情况下,对参数进行有效的估计。这种方法特别适用于那些配分函数难以直接求解或计算成本高昂的模型,如某些复杂的无向概率模型。
2024-10-16 06:00:00
832
原创 面对配分函数 - 随机最大似然和对比散度篇
在统计学和机器学习的领域中,随机最大似然(Stochastic Maximum Likelihood)和对比散度(Contrastive Divergence)是两种重要的方法,它们在无向模型学习中扮演着关键角色。随机最大似然主要用于估计满足给定样本分布的参数,通过最大化似然函数来找到最可能的参数值。这一过程通常涉及正相和负相的平衡,其中正相基于真实数据的期望,而负相则基于模型分布的期望。然而,随机最大似然在某些情况下可能面临计算成本高和效率低的问题。
2024-10-15 06:15:00
703
原创 面对配分函数 - 对数似然梯度篇
在机器学习和统计学领域,对数似然梯度是一种至关重要的优化方法,特别是在处理复杂概率模型时。对数似然梯度方法的核心在于通过最大化对数似然函数来求解模型参数,这一方法广泛应用于各种参数估计问题中。对数似然梯度方法之所以受到青睐,是因为对数似然函数通常具有较为简单的形式,且其梯度易于计算,从而便于使用梯度上升算法进行求解。
2024-10-14 06:30:00
1487
原创 面对配分函数 - 引言篇
深度学习,作为人工智能领域的一个核心分支,近年来在图像识别、语音识别、自然语言处理等多个方面取得了显著进展。其核心思想是通过构建深层的神经网络模型,模拟人脑的学习机制,从而实现对复杂数据的自动特征提取和高效处理。然而,在深度学习的研究与实践中,配分函数(Partition Function)作为一个重要的数学概念,其地位与作用往往被忽视或低估。
2024-10-13 06:15:00
1347
原创 蒙特卡罗方法 - 不同的峰值之间的混合挑战篇
蒙特卡罗方法,也称为统计模拟法或统计试验法,是一种以概率统计理论为基础的数值模拟方法。自20世纪40年代中期提出以来,它因能灵活处理复杂计算问题而广泛应用于多个领域,如金融工程学、宏观经济学和计算物理学等。该方法的核心思想是通过构造概率模型或随机过程,并利用随机数进行模拟试验,以求解问题的统计特性或期望值。然而,在应用蒙特卡罗方法时,特别是在处理具有不同峰值的复杂问题时,常常面临混合挑战。
2024-10-12 06:30:00
840
原创 蒙特卡罗方法 - Gibbs采样篇
蒙特卡罗方法是一种通过在一定范围内均匀随机抽样来得到某个结果的计算方法。其中,Gibbs采样作为蒙特卡罗方法中的一种重要技术,特别是在处理复杂多元概率分布采样时展现出独特的优势。Gibbs采样基于马尔可夫链蒙特卡罗(MCMC)理论,通过逐个更新参数的高斯分布采样,实现复杂数据分布的近似采样。在深度学习和统计学等领域,Gibbs采样被广泛应用于参数估计、模型选择和决策制定等问题,尤其是在神经网络训练和隐变量模型的近似推断中,其效率和精度得到了广泛认可。
2024-10-11 06:30:00
782
原创 蒙特卡罗方法 - 马尔可夫链蒙特卡罗方法篇
蒙特卡罗方法,作为数值计算领域的一颗璀璨明珠,以其强大的随机模拟能力,在物理、金融、工程等多个学科中发挥着重要作用。然而,面对高维、复杂的概率分布,传统蒙特卡罗方法往往难以高效地进行抽样和积分计算。此时,马尔可夫链蒙特卡罗方法(Markov Chain Monte Carlo, MCMC)应运而生,它巧妙地将马尔可夫链的遍历性与蒙特卡罗方法的随机性相结合,为复杂概率分布的抽样和推断提供了全新的解决方案。MCMC方法通过构建一条马尔可夫链,使得链的平稳分布收敛于目标分布,从而实现对复杂概率分布的有效抽样。
2024-10-10 06:30:00
793
原创 蒙特卡罗方法 - 重要采样篇
蒙特卡罗方法,作为一种基于随机抽样的数值计算方法,在金融、物理、工程等多个领域展现出了强大的应用潜力。然而,传统蒙特卡罗方法在处理某些特定问题时,可能会遇到收敛速度慢、计算成本高等挑战。为了克服这些难题,重要采样(Importance Sampling)技术应运而生。重要采样是一种改进的蒙特卡罗方法,它通过改变抽样分布,使得样本更加集中于对目标函数贡献较大的区域,从而加速收敛,提高计算效率。这一技术的核心在于设计一个合适的采样分布,即重要性函数,使得样本能够更有效地反映目标问题的特性。
2024-10-09 06:00:00
706
原创 蒙特卡罗方法 - 采样和蒙特卡罗方法篇
在深度学习的探索中,结构化概率模型以其强大的表示能力和对复杂数据关系的建模能力,成为解决诸多难题的关键工具。然而,这些模型往往涉及高维的、非线性的概率分布,使得直接计算或优化变得异常困难。采样技术和蒙特卡罗方法因此应运而生,成为处理这类问题的有效手段。采样技术允许我们从复杂的概率分布中抽取样本,而蒙特卡罗方法则利用这些样本来近似求解目标问题的解,如期望值、积分等。这两种技术的结合,为深度学习中的结构化概率模型提供了强大的计算支撑,使得模型的学习、推断和优化过程变得更加高效和可行。
2024-10-08 06:30:00
881
原创 蒙特卡罗方法 -引言篇
在深度学习的广阔领域中,结构化概率模型作为一种高效表示和推断复杂数据关系的工具,扮演着至关重要的角色。蒙特卡罗方法(Monte Carlo Method,MC),作为这些模型中的重要技术之一,以其独特的随机抽样和统计试验特性,为解决高维、非线性及难以直接解析计算的问题提供了强有力的支持。该方法不仅适用于求解积分、期望等数学运算,还广泛应用于强化学习、统计物理、金融工程等多个领域,是深度学习研究和应用中不可或缺的一部分。
2024-10-07 09:16:40
584
原创 深度学习中的结构化概率模型 - 结构化概率模型的深度学习方法篇
在深度学习的广阔领域中,结构化概率模型(Structured Probabilistic Model)扮演着至关重要的角色。这类模型利用图论中的图结构来表示概率分布中随机变量之间的复杂关系,为处理高维、结构丰富的数据(如图像、语音、文本等)提供了强有力的工具。结构化概率模型不仅降低了表示概率分布所需的参数数量,还显著提升了模型的学习与推断效率,成为深度学习研究中的关键组成部分。
2024-10-06 06:02:33
1110
原创 深度学习中的结构化概率模型 - 推断和近似推断篇
在深度学习的广阔领域中,结构化概率模型占据了举足轻重的地位。这类模型不仅捕捉了数据间的复杂关联与依赖性,还通过概率图的形式直观地表达了这些关系,为处理复杂数据提供了强大的框架。推断,作为结构化概率模型中的核心任务之一,旨在基于给定的观测数据,计算模型中未观测变量的后验概率分布或某些特定查询的概率值。然而,由于实际问题的复杂性,精确的推断往往计算量巨大甚至不可行,这就催生了对近似推断方法的研究与应用。
2024-10-05 00:01:04
791
原创 深度学习中的结构化概率模型 - 从图模型中采样篇
图模型,如贝叶斯网络、马尔可夫随机场等,通过节点表示变量,边表示变量间的依赖关系,构建了一个直观且强大的框架来描述复杂数据的统计特性。从图模型中采样,意味着我们能够基于这个框架生成符合其定义的概率分布的随机样本,这些样本在训练数据不足或需要进行创造性扩展时尤为宝贵。
2024-10-04 00:22:32
771
原创 深度学习中的结构化概率模型 - 使用图来描述模型结构篇
在深度学习的探索之路上,结构化概率模型以其独特的视角和强大的表达能力,成为了研究复杂数据关系的重要工具。这一模型的核心在于其巧妙地利用图来描述模型结构,将随机变量间的复杂交互关系可视化、结构化。图的引入,不仅为我们提供了一个直观理解数据内部结构的工具,更使得模型的学习与推理过程变得更加高效和精准。通过图,我们可以清晰地看到变量之间的依赖关系、信息传递路径以及潜在的因果结构,这为构建更加复杂、精确的深度学习模型提供了坚实的基础。
2024-10-03 00:10:59
1265
原创 深度学习中的结构化概率模型 - 学习依赖性的关系篇
在深度学习的探索之旅中,结构化概率模型以其独特的能力,在学习数据间复杂依赖关系方面展现出非凡的潜力。传统模型往往难以有效捕捉变量间错综复杂的相互作用,而结构化概率模型则通过引入结构化的先验知识,使得模型能够深入理解并建模这些依赖关系。这种能力对于处理现实世界中的复杂问题至关重要,如自然语言中的语义关联、图像中的空间布局、以及时间序列数据中的动态变化等。通过结构化建模,深度学习系统能够更准确地理解数据背后的规律,从而做出更加精准和可靠的预测与决策。
2024-10-02 00:03:33
1049
原创 深度学习中的结构化概率模型 - 结构化建模的优势篇
在深度学习的广阔领域中,结构化概率模型作为一种高级建模技术,正逐步成为处理复杂数据关系与决策任务的强有力工具。相较于传统的非结构化模型,结构化建模凭借其能够捕获数据中变量间复杂依赖关系的能力,展现出显著的优势。
2024-10-01 08:08:24
328
原创 深度学习中的结构化概率模型 - 非结构化建模的挑战篇
在深度学习的广阔领域中,结构化概率模型作为一种强有力的工具,其重要性不言而喻。这种模型通过图论的概念,即利用图来描述随机变量之间的相互作用,来构建复杂的概率分布。然而,在探索这一领域之前,我们不得不正视非结构化建模所面临的诸多挑战。非结构化建模在处理高维数据时,特别是在需要精确估计密度函数、去噪或进行复杂推理等任务时,显得力不从心。其内存需求巨大、统计效率低下且运行时间长,这些问题严重制约了其在实际应用中的表现。
2024-09-30 06:30:00
1984
原创 深度学习中的结构化概率模型 - 引言篇
在深度学习的广阔领域中,结构化概率模型(Structured Probabilistic Models)扮演着至关重要的角色。这些模型利用图论中的图结构来描述概率分布中随机变量之间的相互作用关系,从而有效解决了高维数据建模中的复杂性和挑战。随着人工智能技术的不断发展,处理具有丰富结构的数据(如图像、语音和文本)成为关键任务,而结构化概率模型正是应对这些挑战的有力工具。
2024-09-29 06:30:00
1260
原创 深度学习自编码器 - 提供发现潜在原因的线索篇
在探索复杂数据背后的秘密时,深度学习如同一把锐利的钥匙,特别是其核心的表示学习机制,为我们打开了一扇通往未知世界的大门。表示学习不仅仅是数据的简单编码或转换,它更是深度挖掘数据内在结构、关系与规律的过程。在这一过程中,深度学习模型能够自动发现并提取出数据中隐藏的、潜在的有价值信息,这些信息往往为我们揭示了现象背后的深层原因和机制。正是这种能力,使得表示学习成为解决复杂问题、揭示潜在原因的强有力工具。
2024-09-28 06:30:00
909
原创 深度学习自编码器 - 得益于深度的指数增益篇
在人工智能的浩瀚星空中,深度学习犹如一颗璀璨的明星,引领着技术革新的浪潮。而表示学习,作为深度学习的核心支柱之一,正以其独特的魅力重塑着机器对世界的理解与认知。深度学习之所以能够实现前所未有的智能飞跃,关键在于其深度的网络结构所带来的指数级性能增益。这种增益不仅体现在数据处理能力的提升上,更深刻地改变了信息的表示与抽象方式,使得机器能够像人类一样,从原始数据中挖掘出高层次的抽象特征,进而实现复杂任务的智能化处理。
2024-09-27 06:30:00
1031
原创 深度学习自编码器 - 分布式表示篇
深度学习作为人工智能领域的重要分支,其核心在于表示学习(Representation Learning),尤其是分布式表示(Distributed Representation)。这一领域的兴起,源于对人类大脑处理信息方式的深刻洞察与模仿。表示学习旨在通过模型参数,以有效的方式表示观测样本,从而简化问题处理的难度。而分布式表示,则进一步强调了数据特征的分散与协作,使得深度学习模型能够更加灵活地捕捉和表达复杂数据的内在结构。
2024-09-26 06:30:00
1036
原创 深度学习之表示学习 - 半监督解释因果关系篇
当我们将目光转向半监督解释因果关系时,这一交叉领域的研究更加引人入胜。它不仅要求模型能够准确地从数据中提取特征并进行分类或回归,还期望模型能够揭示数据背后的因果机制。生成式对抗网络(GANsGANs)等先进模型在此方面展现出巨大潜力,通过模拟数据的生成过程来识别结构化模式,进而推断潜在的因果关系。这种能力对于构建更加鲁棒、可解释的深度学习模型至关重要,尤其在医疗、金融等需要高度准确性与可解释性的领域中具有广泛的应用前景。总之,深度学习中的表示学习与半监督解释因果关系是推动人工智能发展的重要力量。
2024-09-25 06:30:00
1046
原创 深度学习之表示学习 - 贪心逐层无监督预训练篇
在人工智能的浩瀚星空中,深度学习以其强大的数据处理与模式识别能力,成为了一颗璀璨的明星。而表示学习,作为深度学习的核心基石之一,正引领着这一领域不断突破边界。表示学习旨在将原始数据转换为更加抽象、更有意义的特征表示,使得机器学习模型能够更有效地捕捉数据中的复杂关系与规律。在这一过程中,贪心逐层无监督预训练技术犹如一把钥匙,为深度学习模型的构建与优化开辟了新途径。
2024-09-24 06:30:00
1095
原创 深度学习之表示学习 - 引言篇
在数据爆炸的今天,如何从纷繁复杂的信息中抽取有价值的知识,成为了人工智能领域亟待解决的核心问题。深度学习,作为机器学习的一个重要分支,以其强大的特征表示能力和自动化学习特性,引领了这场数据革命的浪潮。而表示学习(Representation Learning),则是深度学习中的核心灵魂,它致力于让机器能够自动地学习数据的有效表示形式,即学习如何将原始数据(如图像、文本、声音等)转换成更高级、更抽象、更易于理解和处理的形式。
2024-09-23 06:30:00
827
原创 深度学习自编码器 - 自编码器的应用篇
在深度学习的广阔领域中,自编码器(Autoencoder)作为一种无监督学习算法,凭借其独特的数据处理与特征提取能力,在多个领域展现出巨大的应用潜力。自编码器通过编码器将输入数据映射到低维的潜在空间,再由解码器重建原始数据,这一过程不仅实现了数据的有效压缩,还促进了数据的特征学习。
2024-09-22 06:00:00
979
系统集成项目管理工程第3版49个过程的定义、作用、输入、输出以及工具与技术汇总
2024-09-13
计算智能导论原版(第二版)
2024-07-09
Elasticsearch实战英文版第二版
2024-06-30
大数据之系统运维和管理功能要求
2024-06-28
大数据之系统框架功能基本要求
2024-06-27
大数据及其应用领域之术语和定义
2024-06-27
大数据之数据资源规划流程及其配置相关活动概览
2024-06-26
大数据参考架构详细描述
2024-06-25
机器学习中线性代数相关概念
2024-06-17
使用Python快速入门机器学习
2024-06-17
大数据之数据分类指南概览
2024-06-14
大数据之政务数据开放共享
2024-06-14
大数据之接口框架基本要求
2024-06-14
大数据之工业应用参考架构
2024-06-14
大数据之存储与处理系统功能要求
2024-06-14
大数据之分析系统框架各功能模块建设要求
2024-06-14
信息系统项目管理师第四版 内容结构知识点整理
2024-06-13
老生常谈的24种Java设计模式
2024-06-13
TOGAF10标准英文版
2024-06-13
项目管理知识体系指南(PMBOK指南)结构及其内容
2024-06-13
项目启动过程中所用工具汇总
2024-06-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅