视觉SLAM十四讲 第八讲 视觉里程计2 8.5直接法BA法 代码解析 总体思路提取特征点构建图优化问题边(误差项),在直接法中为光度误差边的增量项光度误差相对于李代数的雅可比矩阵:图像坐标对李代数的雅可比矩阵为 u 处的像素梯度边的误差项_error ( 0,0 ) = getPixelValue ( x,y ) - _measurement;g2o优化库增加顶点增加边(每个特征点一条边)优化迭代代码#include <iostr...
视觉SLAM十四讲 第八讲 视觉里程计2 8.5直接法 代码解析 总体思路随机选取图像点根据选取到的点和depth图、相机内参,获取这些点的三维空间点坐标由三维空间点坐标,相机位姿,投影到第二幅图像的相机坐标,再由相机内参,投影到第二幅图像。在第二幅图像上,遍历每个投影点,并累积该投影点固定窗口半径内的误差和雅可比由雅可比矩阵计算Hessian矩阵和bias矩阵及代价由LDLT分解法,求解增量,并由增量更新位姿T21 = Sophus::SE3d::...
视觉SLAM十四讲 第八讲 视觉里程计2 8.3 使用LK光流 代码解析 整体思路单层图像的光流对第一帧图像提取FAST角点对提取到的角点提取光流特征检测及描述子生成,调用opencv的GFTTDetector对特征点,假定一个初始的运动量dx=0,dy=0。采用高斯牛顿法,最小化光度误差,求解运动量雅可比矩阵dx/dt,dy/dt即u,v。由u+1的像素值减u-1的像素值,得到dx/dt,同理得到dy/dt。由雅可比矩阵构建 矩阵和 ,代价...
视觉SLAM十四讲 第八讲 视觉里程计2 8.2L-K光流 理论推导 光流描述了像素在图像中的运动,直接法附带着一个相机运动模型。光流是一种描述像素随时间在图像之间运动的方法,如图。随着时间的流逝,同一个像素会在图像中运动,而我们希望追踪它的运动过程。其中,计算部分像素运动的称为稀疏光流,计算所有像素的称为稠密光流。稀疏光流以Lucas-Kanade光流为代表,并可以在SLAM中用于跟踪特征点位置。Lucas-Kanade光流在LK光流中,认为来自相机的图像是...
视觉SLAM十四讲 第七讲 视觉里程计1 Bundle Adjustment公式推导 PnP问题可构建成一个定义于李代数上的非线性最小二乘问题。线性方法往往是先求位姿,再求空间点位置。非线性优化把它们都看成优化变量,放在一起优化。在PnP中,这个Bundle Adjustment问题,是一个最小化重投影误差(Reprojection error)的问题。n个三维空间点P及其投影p,希望计算相机的位姿 R,t\boldsymbol{R,t}R,t ,它的李代数为 $ \bold...
视觉SLAM十四讲 第七讲 视觉里程计1 3D-3D位姿求解 代码解析 总体思路对两幅图像img_1,img_2提取特征点特征点匹配通过相机内参求取特征点对应的相机坐标X,Y,获取特征点的深度信息Z。通过SVD分解,求除相机的位姿R,t。计算质心p1 += pts1[i];p1 = Point3f(Vec3f(p1) / N);去质心q1[i] = pts1[i] - p1;q2[i] = pts2[i] - p2;构建W矩阵q1*q2^T对W矩阵进行...
视觉SLAM十四讲 第七讲 视觉里程计1 3D-2D位姿求解 代码解析 总体思路对两幅图像img_1,img_2分别提取特征点特征匹配通过depth,获得第一幅图像匹配的特征点的深度,由相机内参K恢复这些特征点的三维坐标(相机坐标系)。由第一幅图像中的特征点的三维坐标、第二幅图像中特征点的2D像素坐标,以及相机内参K作为优化函数的输入,分别采用如下方法进行优化牛顿高斯法(1)构建误差方程,由相机位姿、相机内参获得第一幅图像特征点对应的三维坐标到第二幅图像...
旋转向量与欧拉角 罗德里格斯公式(Rodrigues's Formula) 旋转向量旋转矩阵表达方式旋转矩阵描述旋转,变换矩阵描述一个6自由度的三维刚体运动。但存在如下缺点:SO(3)的旋转矩阵有9个量,但一次旋转只有3个自由度。因此这种表达方式是冗余的。同理,变换矩阵16个量表达了6个自由度的变换,也不够紧凑。旋转矩阵自身带有约束:它必须是个正交矩阵,且行列式为1。变换矩阵也是如此。当想要估计或优化一个旋转矩阵/变换矩阵时,这些约束会使得求解变得困难。外...
基于视觉的位姿求解总结 1. 位姿求取方法 1. 2D-2D:通过二维图像点的对应关系,恢复出在两帧之间摄像机的运动。 1. 方法 1. 对极约束,八点法求本质矩阵,分解得旋转矩阵和平移矩阵 1. 5个自由度,8对点来估计 1. SVD分解 2. 单应矩阵:描述两个平面之间的映射关系,若场景中的特征点都落在同一平面上(如墙、地面),可以通过单应性来进行运动估计。 1...
2D-2D:对极约束 对极约束匹配的特征点p1p_1p1,p2p_2p2。两幅图像I1I_1I1,I2I_2I2。第一帧到第二帧图像的运动R,t。两个相机的中心分别为O1O_1O1,O2O_2O2。I1I_1I1中特征点p1p_1p1,在I2I_2I2上对应的特征点p2p_2p2。如果二者匹配正确,则两点对应同一空间点在两个成像平面上的投影。p1p_1p1,在I2I_2I2,O1p1→\o...
世界坐标系和图像坐标系的对应关系 相机标定过程推导世界坐标系到成像坐标系的映射关系透镜模型近似关系(相似三角形)新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:全新的界面设计 ,将会带来全新的写作体验;在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;增加了 图片拖拽 功能...
disparity_filter opencv_example https://github.com/opencv/opencv_contrib/blob/master/modules/ximgproc/samples/disparity_filtering.cpp#include "opencv2/calib3d.hpp"#include "opencv2/imgproc.hpp"#include "opencv2/imgc
Image watch +vs2013 配置和使用 http://www.cnblogs.com/liu-jun/p/3161654.html Image Watch是在VS2012上使用的一款OpenCV工具,能够实时显示图像和矩阵Mat的内容,跟Matlab很像,方便程序调试,相当好用。跟VS2012配合使用,简直就是一款神器!让我一下就爱上它了!第一次看到Image Watch是今年3、4月份的时候,当时是在微博上看到新闻,点击链接的下载页面