
本文盘点CVPR 2020 所有行人检测(Pedestrian Detection)与人员重识别(Person Re-Identification,ReID)相关论文,在视频监控领域该方向技术应用广泛,但不仅仅局限于这两种技术,因为拥挤人群计数(Crowd Counting)往往与行人检测相关,而步态识别(Gait Recognition)可看作一种特殊的人员重识别,故将以上方向的论文均归为行人检测与重识别,总计 33 篇文章。
行人检测的论文不多,总计 5 篇,从内容看解决行人与行人、行人与物体间的遮挡是研究的重点。
拥挤人群计数,总计 3 篇文章,都是在解决透视和尺度问题带来的挑战。
人员重识别部分总计 23 篇文章,除了基于图像的ReID(8篇),基于视频的ReID(3篇),含有众多细分方向:跨分辨率、跨域、跨模态(可见光-红外)、遮挡、非监督、射频信号人员重识别都很有特色。另外中科院推出了一个着装改变的人员重识别数据集COCAS,相信能促进该领域更加实用化。
步态识别共 2 篇文章,这个方向研究的人不多,其中一篇来自著名的步态识别公司银河水滴等,且代码将开源。
已经开源或者即将开源的论文,把代码地址也附上了。
大家可以在:
http://openaccess.thecvf.com/CVPR2020.py
按照题目下载这些论文。
如果想要下载所有CVPR 2020论文,请点击这里:
CVPR 2020 论文全面开放下载,含主会和workshop
行人检测
拥挤场景的行人检测
[1].Detection in Crowded Scenes: One Proposal, Multiple Predictions
作者 | Xuangeng Chu, Anlin Zheng, Xiangyu Zhang, Jian Sun
单位 | 北大;旷视

拥挤场景的行人检测
[2].NMS by Representative Region: Towards Crowded Pedestrian Detection by Proposal Pairing
作者 | Xin Huang, Zheng Ge, Zequn Jie, Osamu Yoshie
单位 | 早稻田大学;腾讯AI

3D点云行人检测与轨迹预测
[3].STINet: Spatio-Temporal-Interactive Network for Pedestrian Detection and Trajectory Prediction
作者 | Zhishuai Zhang, Jiyang Gao, Junhua Mao, Yukai Liu, Dragomir Anguelov, Congcong Li
单位 | Waymo LLC;约翰斯霍普金斯大学

多模态学习+行人检测
[4].Where, What, Whether: Multi-Modal Learning Meets Pedestrian Detection
作者 | Yan Luo, Chongyang Zhang, Muming Zhao, Hao Zhou, Jun Sun
单位 | 上海交通大学

强遮挡行人检测
[5].Temporal-Context Enhanced Detection of Heavily Occluded Pedestrians
作者 | Jialian W
本文详述CVPR 2020中行人检测与人员重识别领域的33篇论文,涵盖遮挡解决、拥挤人群计数、跨域重识别等方向。涉及的技术包括3D点云检测、多模态学习、步态识别,同时介绍了一些开源项目和新数据集。
最低0.47元/天 解锁文章
2701

被折叠的 条评论
为什么被折叠?



