ECCV 2020 论文大盘点—显著目标检测篇

本文盘点了ECCV 2020上关于显著目标检测的11篇论文,涵盖RGB、视频及RGB-D数据。亮点包括南开大学与依图科技合作的高效方法,仅100K参数,以及各种基于深度学习的精细化分割技术,如图神经网络、协同学习和分层动态滤波。所有论文多数已开源,涉及的单位包括国内外知名高校和企业。
摘要由CSDN通过智能技术生成

显著目标检测(Salient Object Detection)是为找到图像或者视频中最明显最显著的物体标出来,可用于图像编辑合成等。虽然其也被称为“检测”,但不同于框出物体的目标检测,近年来显著性目标检测的结果越来越精细,算法已能够较好的把显著的主体目标像素级分割出来。

该部分总计 11 篇论文,1 篇 Oral,1 篇 Spotlight ,10 篇已或即将开源。其中基于图像的2篇,基于视频的1篇,剩下的8篇全部为基于RGB-D数据的。


特别值得一提的是国内南开大学程明明老师组和依图科技的仅需要100K参数的高效方法,代码已经开源,非常值得关注。

下载包含这些论文的 ECCV 2020 所有论文:

ECCV 2020 论文合集下载,分类盘点进行中

RGB图像显著目标检测

高效显著目标检测技术

[1].Highly Efficient Salient Object Detection with 100K Parameters

作者 | Shang-Hua Gao, Yong-Qiang Tan, Ming-Ming Cheng, Chengze Lu, Yunpeng Chen, Shuicheng Yan

单位 | 南开大学;依图科技

论文 | https://arxiv.org/abs/2003.05643

代码 | https://github.com/MCG-NKU/SOD100K

解读 | 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值