
显著目标检测(Salient Object Detection)是为找到图像或者视频中最明显最显著的物体标出来,可用于图像编辑合成等。虽然其也被称为“检测”,但不同于框出物体的目标检测,近年来显著性目标检测的结果越来越精细,算法已能够较好的把显著的主体目标像素级分割出来。
该部分总计 11 篇论文,1 篇 Oral,1 篇 Spotlight ,10 篇已或即将开源。其中基于图像的2篇,基于视频的1篇,剩下的8篇全部为基于RGB-D数据的。
特别值得一提的是国内南开大学程明明老师组和依图科技的仅需要100K参数的高效方法,代码已经开源,非常值得关注。
下载包含这些论文的 ECCV 2020 所有论文:
RGB图像显著目标检测
高效显著目标检测技术
[1].Highly Efficient Salient Object Detection with 100K Parameters
作者 | Shang-Hua Gao, Yong-Qiang Tan, Ming-Ming Cheng, Chengze Lu, Yunpeng Chen, Shuicheng Yan
单位 | 南开大学;依图科技
论文 | https://arxiv.org/abs/2003.05643
代码 | https://github.com/MCG-NKU/SOD100K
解读 |
本文盘点了ECCV 2020上关于显著目标检测的11篇论文,涵盖RGB、视频及RGB-D数据。亮点包括南开大学与依图科技合作的高效方法,仅100K参数,以及各种基于深度学习的精细化分割技术,如图神经网络、协同学习和分层动态滤波。所有论文多数已开源,涉及的单位包括国内外知名高校和企业。
最低0.47元/天 解锁文章
5224

被折叠的 条评论
为什么被折叠?



