# 深入探讨TF-IDF:使用Scikit-learn包创建文本检索工具
## 引言
TF-IDF(Term Frequency-Inverse Document Frequency)是一种用于信息检索和文本挖掘的统计方法。它衡量一个词语在一个文档中的重要性,同时降低常见词的影响。本文将教你如何使用Scikit-learn库创建一个使用TF-IDF的文本检索工具。
## 主要内容
### 1. 理解TF-IDF
TF-IDF的基本原理是通过计算每个词在文本中的出现频率(Term Frequency)和该词在所有文档中的广泛程度(Inverse Document Frequency)的乘积,来评估某词的重要性。
### 2. 安装必要的库
在开始前,确保你的环境中安装了Scikit-learn库:
```bash
%pip install --upgrade --quiet scikit-learn
3. 使用TFIDFRetriever创建检索器
我们可以使用TFIDFRetriever
类通过两种方式创建检索器:从文本列表或文档对象。
从文本创建检索器
from langchain_community.retrievers import TFIDFRetriever
# 使用API代理服务提高访问稳定性
retriever = TFIDFRetriever.from_texts(["foo", "bar", "world", "hello", "foo bar"]