深入探讨TF-IDF:使用Scikit-learn包创建文本检索工具

# 深入探讨TF-IDF:使用Scikit-learn包创建文本检索工具

## 引言
TF-IDF(Term Frequency-Inverse Document Frequency)是一种用于信息检索和文本挖掘的统计方法。它衡量一个词语在一个文档中的重要性,同时降低常见词的影响。本文将教你如何使用Scikit-learn库创建一个使用TF-IDF的文本检索工具。

## 主要内容

### 1. 理解TF-IDF
TF-IDF的基本原理是通过计算每个词在文本中的出现频率(Term Frequency)和该词在所有文档中的广泛程度(Inverse Document Frequency)的乘积,来评估某词的重要性。

### 2. 安装必要的库
在开始前,确保你的环境中安装了Scikit-learn库:
```bash
%pip install --upgrade --quiet scikit-learn

3. 使用TFIDFRetriever创建检索器

我们可以使用TFIDFRetriever类通过两种方式创建检索器:从文本列表或文档对象。

从文本创建检索器
from langchain_community.retrievers import TFIDFRetriever

# 使用API代理服务提高访问稳定性
retriever = TFIDFRetriever.from_texts(["foo", "bar", "world", "hello", "foo bar"]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值