YOLO算法解读

本文以从头实现YOLO的角度出发,解释了YOLO目标检测框架。本文不会描述网络的优点/缺点或每个设计选择的原因,而是关注于它是如何工作的。在阅读本文之前,假设读者对神经网络,特别是CNN有一个基本的了解。 文中所有的描述都与YOLO的原论文有关: You Only Look Once: Unifi...

2018-10-24 16:41:24

阅读数 1964

评论数 3

1D卷积网络HAR(人体活动识别)实践

HAR(人体活动识别)是根据加速度计序列数据,将活动分类为已知的预定义的活动类别,其数据是由专业设备或智能手机记录的。 解决这个问题的传统方法需要手工制作特征,这些特征来自于基于固定大小的窗口和训练机器学习模型的时间序列数据,例如集成决策树。而难点在于,这种特征工程需要在该领域拥有深厚的专业知识。...

2018-10-17 10:56:27

阅读数 1061

评论数 0

DeepMind的AI项目如何修复Android系统糟糕的电池状况

谷歌的Android Pie操作系统使用DeepMind的人工智能来改善你手机的电池寿命。不过这会有哪些不同之处呢? 2014年1月,谷歌斥资4亿英镑收购了总部位于伦敦的人工智能公司DeepMind。当时,还不清楚谷歌和现在的母公司Alphabet将会从中得到什么。四年后,专注于为谷歌开发人工智...

2018-09-17 14:43:05

阅读数 100

评论数 0

如何在边缘设备上适配大型神经网络

对于任何想要创建可扩展服务的人来说,部署有内存限制的深度学习算法都是一个挑战。从长远来看,云服务是昂贵的。在边缘设备上离线部署模型更便宜,而且还有其他好处。唯一的缺点是它们缺乏内存和计算能力。 这篇博客探索了一些可以用来在内存受限的设备中适配神经网络的技术。因为“训练”和“推理”阶段用到了不同的...

2018-08-24 10:16:05

阅读数 390

评论数 0

关于矩阵胶囊与EM路由的理解(基于Hinton的胶囊网络)

本文介绍了Hinton的第二篇胶囊网络论文“Matrix capsules with EM Routing”,其作者分别为Geoffrey E Hinton、Sara Sabour和Nicholas Frosst。我们首先讨论矩阵胶囊并应用EM(期望最大化)路由对不同角度的图像进行分类。对于那些想...

2018-03-04 13:32:18

阅读数 4238

评论数 1

关于胶囊之间的动态路由的理解(基于Hinton的胶囊网络)

本文介绍了由Sara Sabour,Nicholas Frosst和Geoffrey Hinton所著的论文“胶囊之间的动态路由”。在这篇文章中,我们将描述胶囊的基本概念,并应用胶囊网络(capsnet)检测MNIST数据集中的数字。在本文最后的第三部分中,我们对其做一个具体的实现。代码实现来源于...

2018-02-28 21:02:33

阅读数 5186

评论数 0

Tensorflow Lite初探(Android)

11月15日,谷歌正式发布了TensorFlow Lite开发者预览版。有了TensorFlow Lite,应用开发者可以在移动设备上部署人工智能。本文分析了官方tensorflow lite在android端的demo,并对tensorflow相关的模型持久化的知识点,尤其是tflite,做了简...

2017-12-21 15:22:12

阅读数 16183

评论数 6

提示
确定要删除当前文章?
取消 删除
关闭
关闭