使用Pandas进行数据清洗与分析是数据科学和数据分析中的一个常见任务。下面是一个示例,演示如何使用Pandas进行数据清洗和基本的分析。假设我们有一个包含顾客信息和交易记录的CSV文件,文件内容如下:
customer_id,name,age,purchase_amount,purchase_date
1,John Doe,28,120.50,2023-01-15
2,Jane Smith,34,80.20,2023-01-16
3,Emily Davis,45,150.00,2023-01-17
4,Michael Brown,23,200.30,2023-01-18
5,Jessica Williams,NaN,50.00,2023-01-19
6,David Miller,30,NaN,2023-01-20
7,Chris Wilson,40,110.70,NaN
我们将执行以下步骤:
- 读取数据
- 检查和处理缺失值
- 转换数据类型
- 数据分析
代码实现
import pandas as pd
# 1. 读取数据
data = pd.read_csv('customer_transactions.csv')
# 2. 检查缺失值
print("原始数据的缺失值情况:")
print(data.isnull().sum())
# 3. 处理缺失值
# 填充缺失的年龄值(使用中位数)
data['age'].fillna(data['age'].median