机器人基础之运动学逆解

概述

运动学逆解是指已知机器人末端位姿,求解各运动关节的位置,它是机器人运动规划和轨迹控制的基础。
以机械臂为例,其运动学逆解的求法主要有两类:数值解和解析解。
数值解法只能求出方程的特解,不能求出所有的解。
它的优点是计算简单,不需要进行矩阵操作;缺点是由于使用了迭代法(如牛顿迭代),实时性较差。
这里主要介绍解析解法。
研究发现,如果串联机械臂在结构上满足下面两个充分条件中的一个,就会有解析解。这两个充分条件也被称为Pieper准则,即:

  1. 三个相邻关节轴线交于一点
  2. 三个相邻关节轴线相互平行

现代绝大多数工业机械臂都满足Pieper准则的第一个充分条件,即机械臂末端的三个关节的轴线相交于一点,该点通常称为腕点。
满足第二个充分条件的机器人较少,最典型的例子是SCARA机器人。之前我所在的公司应用SCARA构型的机器人进行工件的上下料。
假设机械臂满足Pieper准则的第一个充分条件,则机械臂的运动学方程可以写为 6 0 T = 3 0 T 6 3 T {^0_6}T={^0_3}T{^3_6}T 60T=30T63T其中,   3 0 T \ {^0_3}T  30T规定了腕点的位置,   6 3 T \ {^3_6}T  63T规定了腕部的方位。因此,运动学逆解也分为两步,先求解 θ 1 \theta_1 θ1 θ 2 \theta_2 θ2 θ 3 \theta_3 θ3(腕点位置),再求解 θ 4 \theta_4 θ4 θ 5 \theta_5 θ5 θ 6 \theta_6 θ6(腕部方位)。

求解腕点位置

将固连在机械臂腕部的三个坐标系{4}、{5}、{6}的原点设在腕点,则腕点相对于基坐标系{0}的位置为: 0 P 6 o = 0 P 4 o = 1 0 T 2 1 T 3 2 T 3 P 4 o {^0}P_6o= {^0}P_4o={^0_1}T{^1_2}T{^2_3}T {^3}P_4o 0P6o=0P4o=10T21T32T3P4o其中,   3 P 4 o \ {^3}P_4o  3P4o即为变换矩阵   4 3 T \ {^3_4}T  43T的第4列,即 0 P 4 o = 1 0 T 2 1 T 3 2 T [ a 3 − d 4 s i n θ 3 d 4 c o s θ 3 1 ] (n) {^0}P_4o={^0_1}T{^1_2}T{^2_3}T \left[ \begin{matrix} a_3\\ -d_4 sin\theta_3\\ d_4 cos\theta_3\\ 1 \end{matrix} \right] \tag{n} 0P4o=10T21T32Ta3d4sinθ3d4cosθ31(n) [ f 1 ( θ 3 ) f 2 ( θ 3 ) f 3 ( θ 3 ) 1 ] = 3 2 T [ a 3 − d 4 s i n θ 3 d 4 c o s θ 3 1 ] (n) \left[ \begin{matrix} f_1(\theta_3) \\ f_2(\theta_3) \\ f_3(\theta_3) \\ 1 \end{matrix} \right] \tag{n}={^2_3}T \left[ \begin{matrix} a_3\\ -d_4 sin\theta_3\\ d_4 cos\theta_3\\ 1 \end{matrix} \right] f1(θ3)f2(θ3)f3(θ3)1=32Ta3d4sinθ3d4cosθ31(n)则有, f 1 ( θ 3 ) = a 3 c o s θ 3 + d 4 s i n θ 3 s i n α 3 + a 2 f_1(\theta_3)=a_3 cos\theta_3 +d_4 sin\theta_3sin\alpha_3 +a_2 f1(θ3)=a3cosθ3+d4sinθ3sinα3+a2 f 2 ( θ 3 ) = a 3 s i n θ 3 c o s α 2 − d 4 c o s θ 3 c o s α 2 s i n α 3 − d 4 s i n α 2 c o s α 3 − d 3 s i n α 2 f_2(\theta_3)=a_3 sin\theta_3 cos\alpha_2-d_4 cos\theta_3 cos\alpha_2 sin\alpha_3 -d_4 sin\alpha_2 cos\alpha_3 -d_3 sin\alpha_2 f2(θ3)=a3sinθ3cosα2d4cosθ3cosα2sinα3d4sinα2cosα3d3sinα2 f 3 ( θ 3 ) = a 3 s i n θ 3 s i n α 2 − d 4 c o s θ 3 s i n α 2 s i n α 3 + d 4 c o s α 2 c o s α 3 + d 3 c o s α 2 f_3(\theta_3)=a_3 sin\theta_3 sin\alpha_2-d_4 cos\theta_3 sin\alpha_2 sin\alpha_3 +d_4 cos\alpha_2 cos\alpha_3 +d_3 cos\alpha_2 f3(θ3)=a3sinθ3sinα2d4cosθ3sinα2sinα3+d4cosα2cosα3

### 回答1: 六轴机器人是一种具有六个自由度的机器人,其运动学逆解是指对机器人的末端执行器的位置和姿态进行求解,以实现机器人的正确运动。 六轴机器人运动学正解是指已知各个关节的角度,求解出机器人末端执行器的位姿。根据六个关节的角度、长度以及关节之间的连接方式,可以使用解析法、几何法或矢量法等方法来求解机器人的正解。这样可以得到机器人末端的位置(三维坐标)和姿态(姿态矩阵或四元数),从而实现末端的运动。 六轴机器人运动学逆解是指已知机器人末端执行器的位姿,求解出各个关节的角度。机器人逆解是一个反向问题,通常使用数值方法(如牛顿法、雅克比转置法等)进行求解。逆解的目标是通过给定末端执行器的位姿来确定合适的关节角度,使机器人能够到达指定的位置和姿态。逆解可通过迭代算法逐步调整关节角度,直到满足末端执行器的位姿要求。 运动学逆解机器人控制中起着重要的作用,它们是实现机器人精确运动控制和路径规划的基础。通过正逆解,可以精确控制六轴机器人的末端执行器的位置和姿态,实现复杂的运动任务,如拾取、装配、焊接等。这对于自动化生产线、工业制造和航天航空等领域具有重要意义。 ### 回答2: 六轴机器人是一种由六个关节组成的机械臂,可以在三维空间内自由移动和执行各种工作任务。六轴机器人运动学逆解是指通过机械臂的关节角度计算出机械臂的末端执行器的空间位置和姿态,或者通过给定的末端执行器的目标空间位置和姿态计算出关节角度。 机器人运动学正解是从机器人基座坐标系到末端执行器坐标系的过程。它通过利用机械结构和关节限制条件,将各个关节的角度转化为末端执行器的位置和姿态。运动学正解的目的是求解出机械臂末端执行器的位置和姿态,从而确定机器人的姿态。 机器人运动学逆解是从末端执行器坐标系到机器人基座坐标系的过程。它是运动学正解的逆运算,通过给定末端执行器的目标位置和姿态,计算出机器人各个关节的角度值。运动学逆解的目的是确定关节角度,从而实现机械臂从给定的位置到目标位置的移动。 六轴机器人运动学逆解机器人的基本问题之一,能够帮助机器人完成各种任务和运动控制。在实际应用中,正逆解通常利用数学方法和算法进行计算,通过求解运动学逆解机器人能够自主地执行各种动作和任务。这对于工业自动化、物流和生产线等领域都具有重要的意义。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值