实战:从Python分析17-18赛季NBA胜率超70%球队数据开始…

本文通过分析17-18赛季NBA球队数据,展示了Python在csv、json和mysql操作中的应用。利用csv模块读写数据,json模块进行编码解码,pymysql模块连接MySQL数据库进行数据操作。文章强调了实际操作和思考总结在学习数据分析中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Casey    岂安业务风险分析师


主要负责岂安科技RED.Q的数据分析和运营工作。



就在昨天,12月19日,科比再次站在斯台普斯中心球馆中央,见证自己的两件球衣高悬于球馆上空。作为一个正奋战在 Python 之路上的球迷,开始了一次数据分析实战,于是,以分析球赛数据为起点的操作开始了......



前言


python 作为一个功能强大的编程语言,如今在数据分析、机器学习、人工智能等方面如日中天。如果想做数据分析,那么 python 则为一把利器。

初入职场,除了使用 python 中列表、元组、字典等常用数据类型外,经常会接触到一些如 csv 文件、json 格式的数据、或者直接要和数据库打交道。

本文,通过几个小例子简述 python 对 csv、json、mysql 的简单操作。



数据分析实战


1


已知 nba-season_17_18.csv 文件(见下图)存放截至目前17-18赛季 NBA 常规赛联盟全部球队的数据。

现在需要将胜率超过 70% 并且场均得分在 110 分的球队信息写入到 result.csv 中。


在这个实战项目中,pandas库的使用是数据处理和特征工程的关键。首先,你需要掌握如何使用pandas库加载和预处理NBA比赛数据集。pandas提供了诸多函数和方法,用于数据导入、清洗和转换,这为后续的特征工程奠定了基础。例如,你可以使用pandas的read_csv函数来导入CSV格式的数据,并通过dropna方法处理缺失值,进一步利用describe方法获取数据的基本统计信息。 参考资源链接:[Python决策树实战NBA比赛胜者预测](https://wenku.csdn.net/doc/1c8ad1m7p9?spm=1055.2569.3001.10343) 接下来,涉及到特征工程的环节。在构建预测模型之前,你需要识别和创建对模型性能有影响的特征。这可能包括计算球队胜率、球员的统计数据等。利用pandas的强大功能,你可以轻松地进行数据分组、聚合和转换,从而创建新的特征列。 在特征准备就绪后,可以使用决策树算法来构建预测模型。决策树模型能够处理各种类型的数据特征,并通过一系列的二分决策过程来预测比赛结果。在Python中,可以使用scikit-learn库中的DecisionTreeClassifier来训练决策树模型。训练模型时,你需要划分数据集为训练集和测试集,并使用训练集数据来拟合模型。之后,你可以使用模型对测试集进行预测,并利用准确度评分函数评估模型的性能。 除了决策树,随机森林作为集成学习方法,也被广泛应用于提高预测准确性和稳定性。通过构建多个决策树并进行综合预测,随机森林能够有效地减少过拟合,并在一定程度上提升模型的泛化能力。 最后,模型的评估对于理解模型性能至关重要。在预测NBA比赛胜者时,除了准确度之外,可能还需要考虑其他指标,如混淆矩阵、精确度、召回率和F1分数等。通过这些指标,你可以更全面地理解模型预测的优劣。 为了进一步提高你的数据分析和机器学习技能,推荐查阅《Python决策树实战NBA比赛胜者预测》。该书不仅涵盖了数据加载与处理、决策树和随机森林算法的使用,还深入讲解了特征工程和模型评估,是学习使用Python进行数据挖掘项目开发的宝贵资源。 参考资源链接:[Python决策树实战NBA比赛胜者预测](https://wenku.csdn.net/doc/1c8ad1m7p9?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值