Nero:还可以做照片VCD

Nero不仅仅是一个优秀的刻录软件,它除了具有强大的刻录功能以外,还具有许多非常实用的小功能,您可别小看了这些附加功能,其中有一些即使与专业工具相比,也一点不逊色。

利用Nero,可以将常见的图像格式(bmp、ico、ljp、pbm、pcx、png、tga、tif 、wmf等)以帧的形式按照先后顺序制作成VCD相册(类似于电脑上播放的幻灯片),然后在VCD机上播放。Nero可以自动将图片的分辨率转换为VCD所需要的分辨率,所以原图可以是任何分辨率的。

下面我们就在Nero中新建一个VCD。具体方法是启动Nero,在“Nero精灵”向导窗口中依次选择“CD|编辑新的光盘|其他光盘格式|Video CD”,在“文件浏览器”中找到需要制作VCD相册的图片文件,然后将其拖到左侧轨道编辑窗口中,这时在轨道窗口中就会显示出添加的图片的详细信息。不过Nero不直接支持图片的先后顺序,您可以通过右键菜单中的剪切、粘贴、删除、添加文件等命令来间接进行顺序调节(如图1)。选择相应的图片文件,点击“播放”按钮即可浏览该图片。

制作VCD相册最重要的就是设置图片和图片之间的时间间隔,选择轨道窗口中的所有图片(Ctrl+A),然后点击鼠标右键,选择“属性”,此时在弹出的窗口中显示出该视频的一些信息,需要设置的是“暂停”选项,选择时间为“秒”,然后根据自己的需要输入间隔时间(以秒为单位,这里以10秒为例)。当然您也可以具体设置单个图片与图片之间的时间间隔。然后点击“确定”按钮确认您的选择并关闭对话框。为了确保将来制作的VCD相册可以在尽可能多的播放机上播放,尽量选中“文件|更改刻录设置|Video
CD”下的“将图片存储于”复选框。接下来,点击“打开刻录CD窗口”按钮,然后点击“刻录”就可以了。

不过需要指出的是,Nero不能添加背景音乐,也不能设置图片与图片之间的转场效果。我们也可以用类似的方法制作SVCD相册。
AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值