本博客以scala编程概念为主
1、概念
官网链接
Flink中的DataSet程序是常规程序,可对数据集进行转换(filtering, mapping, joining, grouping)。最初从某些来源(sources)(by reading files, or from local collections)创建数据集。结果通过接收器返回,接收器可以例如将数据写入(分布式)文件或标准输出(例如命令行终端)。Flink程序可以在各种上下文中运行,独立运行或嵌入其他程序中。执行可以在本地JVM或许多计算机的群集中进行。
Source=>Flink(transformations)=>sink
2、flink综合java和scala开发的项目构建creenflow
1、创建一个空的scala工程
2、pom文件里添加
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<flink.version>1.9.0</flink.version>
<scala.binary.version>2.11</scala.binary.version>
<scala.version>2.11.12</scala.version>
</properties>
可以在项目中新建java包;完整项目结构如下:

3、Data Source概述
1、基于文件
- readTextFile(path)/ TextInputFormat-逐行读取文件,并将它们作为字符串返回。
- readTextFileWithValue(path)/ TextValueInputFormat-逐行读取文件,并将它们作为StringValues返回。StringValues是可变字符串。
- readCsvFile(path)/ CsvInputFormat-解析以逗号(或其他字符)分隔的字段的文件。返回元组,案例类对象或POJO的数据集。支持基本的Java类型及其与Value相对应的字段类型。
- readFileOfPrimitives(path, delimiter)// PrimitiveInputFormat-解析以换行符(或其他char序列)定界的原始数据类型的文件,例如String或Integer使用给定的定界符。
- readSequenceFile(Key, Value, path)// SequenceFileInputFormat-创建JobConf并从指定的路径中读取类型为SequenceFileInputFormat,Key类和Value类的文件,并将它们作为Tuple2 <Key,Value>返回。
2、基于集合
-
fromCollection(Iterable)-从Iterable创建数据集。Iterable返回的所有元素都必须是同一类型。
-
fromCollection(Iterator)-从迭代器创建数据集。该类指定迭代器返回的元素的数据类型。
-
fromElements(elements: _*)-从给定的对象序列创建数据集。所有对象必须具有相同的类型。
-
fromParallelCollection(SplittableIterator)-从迭代器并行创建数据集。该类指定迭代器返回的元素的数据类型。
-
generateSequence(from, to) -并行生成给定间隔中的数字序列。
3、通用
-
readFile(inputFormat, path)/ FileInputFormat-接受文件输入格式。
-
createInput(inputFormat)/ InputFormat-接受通用输入格式。
4、从集合创建DataSet的scala实现
package com.kun.flink.chapter04
import org.apache.flink.api.scala._
object DataSetDataSourceApp {
def main(args: Array[String]): Unit = {
val env = ExecutionEnvironment.getExecutionEnvironment
fromCollection(env)
}
def fromCollection(env: ExecutionEnvironment): Unit = {
val data = 1 to 10
env.fromCollection(data).print()
}
}
//结果
1
2
3
4
5
6
7
8
9
10
5、从集合创建DataSet的java实现
package com.kun.flink.chapter04;
import org.apache.flink.api.java.ExecutionEnvironment;
import java.util.ArrayList;
import java.util.List;
public class JavaDataSetDataSourceApp {
public static void main(String[] args) throws Exception {
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
fromCollection(env);
}
public static void fromCollection(ExecutionEnvironment env) throws Exception {
List<Integer> list = new ArrayList<Integer>();
for (int i = 0; i <10 ; i++) {
list.add(i);
}
env.fromCollection(list).print();
}
}
//结果
0
1
2
3
4
5
6
7
8
9
6、从文件创建DataSet的scala实现
def main(args: Array[String]): Unit = {
val env = ExecutionEnvironment.getExecutionEnvironment
textFile(env)
}
def textFile(env:ExecutionEnvironment):Unit = {
//可以是也给文件也可以是一个文件夹
val filePath="test_files\\test_file\\test01.txt"
env.readTextFile(filePath).print()
}
//结果
hello,welcome
hello,world,welcome
7、从文件创建DataSet的java实现
public static void main(String[] args) throws Exception {
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment()

本文主要介绍Flink的DataSet API编程,涵盖概念、数据源、从集合和文件创建DataSet、各种转换操作(如map、filter、join等)以及数据输出、计数器、分布式缓存和广播变量的使用。
最低0.47元/天 解锁文章
179

被折叠的 条评论
为什么被折叠?



