MapReduce 框架的核心步骤主要分两部分:Map 和Reduce。当你向MapReduce 框架提交一个计算作业时,它会首先把计算作业拆分成若干个Map 任务,然后分配到不同的节点上去执行,每一个Map 任务处理输入数据中的一部分,当Map 任务完成后,它会生成一些中间文件,这些中间文件将会作为Reduce 任务的输入数据。Reduce 任务的主要目标就是把前面若干个Map 的输出汇总到一起并输出。
一、对于 JOIN 操作:
本文详细介绍了Hive中MapReduce在JOIN、GROUP BY和DISTINCT操作中的实现原理。在JOIN操作中,Map阶段以JOIN条件列作为Key,Reducer通过Tag识别不同表的数据进行Join。GROUP BY操作在Mapper端可预聚合减少Reducer负载。DISTINCT操作通过Map阶段计数,Reduce阶段判断唯一性。
MapReduce 框架的核心步骤主要分两部分:Map 和Reduce。当你向MapReduce 框架提交一个计算作业时,它会首先把计算作业拆分成若干个Map 任务,然后分配到不同的节点上去执行,每一个Map 任务处理输入数据中的一部分,当Map 任务完成后,它会生成一些中间文件,这些中间文件将会作为Reduce 任务的输入数据。Reduce 任务的主要目标就是把前面若干个Map 的输出汇总到一起并输出。
一、对于 JOIN 操作:
678
1509

被折叠的 条评论
为什么被折叠?