题目描述:
已知一支股票连续n天的价格走势,以长度为n的整数数组表示,数组中第i个元素(prices[i])代表该股票第i天的股价。 假设你一开始没有股票,但有至多两次买入1股而后卖出1股的机会,并且买入前一定要先保证手上没有股票。若两次交易机会都放弃,收益为0。 设计算法,计算你能获得的最大收益。 输入数值范围:2<=n<=100,0<=prices[i]<=100。
实际上是LeetCode的题目,原题链接: http://oj.leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/
这道题是Best Time to Buy and Sell Stock的扩展,现在我们最多可以进行两次交易。我们仍然使用动态规划来完成,事实上可以解决非常通用的情况,也就是最多进行k次交易的情况。
这里我们先解释最多可以进行k次交易的算法,然后最多进行两次我们只需要把k取成2即可。我们还是使用“局部最优和全局最优解法”。我们维护两种量,一个是当前到达第i天可以最多进行j次交易,最好的利润是多少(global[i][j]),另一个是当前到达第i天,最多可进行j次交易,并且最后一次交易在当天卖出的最好的利润是多少(local[i][j])。下面我们来看递推式,全局的比较简单,
global[i][j]=max(local[i][j],global[i-1][j]),
也就是去当前局部最好的,和过往全局最好的中大的那个(因为最后一次交易如果包含当前天一定在局部最好的里面,否则一定在过往全局最优的里面)。对于局部变量的维护,递推式是
local[i][j]=max(global[i-1][j-1]+max(diff,0),local[i-1][j]+diff),
也就是看两个量,第一个是全局到i-1天进行j-1次交易,然后加上今天的交易,如果今天是赚钱的话(也就是前面只要j-1次交易,最后一次交易取当前天),第二个量则是取local第i-1天j次交易,然后加上今天的差值(这里因为local[i-1][j]比如包含第i-1天卖出的交易,所以现在变成第i天卖出,并不会增加交易次数,而且这里无论diff是不是大于0都一定要加上,因为否则就不满足local[i][j]必须在最后一天卖出的条件了)。
```java
public int calculateMax(int[] prices) {
if(prices==null || prices.length==0)
return 0;
int[] local = new int[3];
int[] global = new int[3];
for(int i=0;i<prices.length-1;i++)
{
int diff = prices[i+1]-prices[i];
for(int j=2;j>=1;j--)
{
local[j] = Math.max(global[j-1]+(diff>0?diff:0), local[j]+diff);
global[j] = Math.max(local[j],global[j]);
}
}
return global[2];
}
```
可以看到,这里的模型是比较复杂的,主要是在递推式中,local和global是交替求解的。不过理清思路之后,代码是非常简练的,不禁感叹算法真是牛逼哈,这么个复杂生活问题几行代码就解决了。
参考资料:http://blog.csdn.net/linhuanmars/article/details/23236995