HDU - 6610 Game (带修莫队)

本文详细探讨了一道编程竞赛题目,涉及尼姆博弈的结论在区间子区间计数问题中的应用。文章阐述了如何通过前缀异或和区间修改操作来求解不等于0的子区间个数,并给出C++代码实现,同时讨论了修改操作对前缀和的影响,展示了如何高效地处理区间修改和查询操作。
摘要由CSDN通过智能技术生成

题链:https://vjudge.net/problem/HDU-6610

题意:用到了尼姆博弈的结论。对于一个区间[L,R],问有多少子区间[l,r],a[l] ^ a[l+1] ^ a[l+2] ^  ...  ^ a[r] != 0 ? 有修改,修改是将a[pos],a[pos+1]交换。

思路:我们求等于0的子区间个数,再减去即可。CodeForces - 617E 的带修版。考虑修改带来的影响,首先因为前缀的思想,pre[pos-1]以及pre[pos+2] ,  pre[pos+3] , pre[pos+4] , ... , pre[n]都不会受影响。

修改前:

pre[pos]=pre[pos-1] ^ a[pos]

pre[pos+1] = pre[pos] ^ a[pos+1] = pre[pos-1] ^ a[pos] ^ a[pos+1]

修改后:

新的pre[pos] = pre[pos-1] ^ a[pos+1] = pre[pos-1] ^ a[pos]^a[pos] ^a[pos+1] = 旧的 pre[pos] ^a[pos] ^a[pos+1]  

新的 pre[pos+1] = 新的 pre[pos] ^ a[pos] =  pre[pos-1] ^ a[pos+1] ^ a[pos] = pre[pos-1] ^ a[pos] ^ a[pos+1] = 旧的 pre[pos+1]

我们可以发现只有pre[pos]发生了变化,变为了pre[pos]^a[pos]^a[pos+1] 。

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1e5+10;
const int M = 2e6+10;
int n,m,a[N],pre[N];
struct node{
	int l,r,id,tim;
}q[N];
int cntq;
int b[N],cntb;
int base,be[N];
bool cmp(node a,node b){
	return (be[a.l]^be[b.l]) ? be[a.l]<be[b.l] :(be[a.r]^be[b.r]) ? be[a.r]<be[b.r] : a.tim<b.tim;
}
int num[M];
ll sum,ans[N],f[N];
void del(int x){
	--num[pre[x]];
	sum-=num[pre[x]];
	
}
void add(int x){
	sum+=num[pre[x]];
	++num[pre[x]];
}
int read() {
	int res = 0;
	char c = getchar();
	while(!isdigit(c)) c = getchar();
	while(isdigit(c)) res = (res << 1) + (res << 3) + c - 48, c = getchar();
	return res;
}
int main(void){	
	for(ll i=1;i<N;i++)
		f[i]=i*(i+1)/2;
	//n=read(),m=read();
	while(scanf("%d%d",&n,&m)!=EOF){
		int maxx=0;
		cntq=cntb=0;
		base=ceil(pow(1.0*n,2.0/3.0));
		for(int i=1;i<=n;i++){
			a[i]=read();
			if(a[i]>maxx) maxx=a[i];
			pre[i]=pre[i-1]^a[i];
			be[i]=i/base;
		}
		for(int i=1;i<=m;i++){
			int op;
			op=read();
			if(op==1){
				q[++cntq].l=read();
				q[cntq].r=read();
				q[cntq].l--;
				q[cntq].id=cntq;
				q[cntq].tim=cntb;
			}else
				b[++cntb]=read();
			
		}
		sort(q+1,q+1+cntq,cmp);
		sum=0;
		int l=1,r=0,ti=0;
		for(int i=1;i<=cntq;i++){			
			int ql=q[i].l,qr=q[i].r,qt=q[i].tim;
			while(l<ql) del(l++);
			while(l>ql) add(--l);
			while(r<qr) add(++r);
			while(r>qr) del(r--);			
			while(ti<qt){
				++ti;
				int pos=b[ti];
				if(ql<=pos&&pos<=qr)
					del(pos);				
				pre[pos]=pre[pos]^a[pos]^a[pos+1];
				swap(a[pos],a[pos+1]);
				if(ql<=pos&&pos<=qr)
					add(pos);
			}
			while(ti>qt){
				int pos=b[ti];
				if(ql<=pos&&pos<=qr)
					del(pos);				
				pre[pos]=pre[pos]^a[pos]^a[pos+1];
				swap(a[pos],a[pos+1]);
				if(ql<=pos&&pos<=qr)
					add(pos);
				--ti;
			}
			ans[q[i].id]=f[qr-ql]-sum;
		}
		for(int i=1;i<=cntq;i++)
			printf("%lld\n",ans[i]);
		maxx<<=1;
		for(int i=0;i<=maxx;i++)
			num[i]=0;
	}
	
	return 0;	
} 

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值