题链:https://vjudge.net/problem/HDU-6610
题意:用到了尼姆博弈的结论。对于一个区间[L,R],问有多少子区间[l,r],a[l] ^ a[l+1] ^ a[l+2] ^ ... ^ a[r] != 0 ? 有修改,修改是将a[pos],a[pos+1]交换。
思路:我们求等于0的子区间个数,再减去即可。CodeForces - 617E 的带修版。考虑修改带来的影响,首先因为前缀的思想,pre[pos-1]以及pre[pos+2] , pre[pos+3] , pre[pos+4] , ... , pre[n]都不会受影响。
修改前:
pre[pos]=pre[pos-1] ^ a[pos]
pre[pos+1] = pre[pos] ^ a[pos+1] = pre[pos-1] ^ a[pos] ^ a[pos+1]
修改后:
新的pre[pos] = pre[pos-1] ^ a[pos+1] = pre[pos-1] ^ a[pos]^a[pos] ^a[pos+1] = 旧的 pre[pos] ^a[pos] ^a[pos+1]
新的 pre[pos+1] = 新的 pre[pos] ^ a[pos] = pre[pos-1] ^ a[pos+1] ^ a[pos] = pre[pos-1] ^ a[pos] ^ a[pos+1] = 旧的 pre[pos+1]
我们可以发现只有pre[pos]发生了变化,变为了pre[pos]^a[pos]^a[pos+1] 。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 1e5+10;
const int M = 2e6+10;
int n,m,a[N],pre[N];
struct node{
int l,r,id,tim;
}q[N];
int cntq;
int b[N],cntb;
int base,be[N];
bool cmp(node a,node b){
return (be[a.l]^be[b.l]) ? be[a.l]<be[b.l] :(be[a.r]^be[b.r]) ? be[a.r]<be[b.r] : a.tim<b.tim;
}
int num[M];
ll sum,ans[N],f[N];
void del(int x){
--num[pre[x]];
sum-=num[pre[x]];
}
void add(int x){
sum+=num[pre[x]];
++num[pre[x]];
}
int read() {
int res = 0;
char c = getchar();
while(!isdigit(c)) c = getchar();
while(isdigit(c)) res = (res << 1) + (res << 3) + c - 48, c = getchar();
return res;
}
int main(void){
for(ll i=1;i<N;i++)
f[i]=i*(i+1)/2;
//n=read(),m=read();
while(scanf("%d%d",&n,&m)!=EOF){
int maxx=0;
cntq=cntb=0;
base=ceil(pow(1.0*n,2.0/3.0));
for(int i=1;i<=n;i++){
a[i]=read();
if(a[i]>maxx) maxx=a[i];
pre[i]=pre[i-1]^a[i];
be[i]=i/base;
}
for(int i=1;i<=m;i++){
int op;
op=read();
if(op==1){
q[++cntq].l=read();
q[cntq].r=read();
q[cntq].l--;
q[cntq].id=cntq;
q[cntq].tim=cntb;
}else
b[++cntb]=read();
}
sort(q+1,q+1+cntq,cmp);
sum=0;
int l=1,r=0,ti=0;
for(int i=1;i<=cntq;i++){
int ql=q[i].l,qr=q[i].r,qt=q[i].tim;
while(l<ql) del(l++);
while(l>ql) add(--l);
while(r<qr) add(++r);
while(r>qr) del(r--);
while(ti<qt){
++ti;
int pos=b[ti];
if(ql<=pos&&pos<=qr)
del(pos);
pre[pos]=pre[pos]^a[pos]^a[pos+1];
swap(a[pos],a[pos+1]);
if(ql<=pos&&pos<=qr)
add(pos);
}
while(ti>qt){
int pos=b[ti];
if(ql<=pos&&pos<=qr)
del(pos);
pre[pos]=pre[pos]^a[pos]^a[pos+1];
swap(a[pos],a[pos+1]);
if(ql<=pos&&pos<=qr)
add(pos);
--ti;
}
ans[q[i].id]=f[qr-ql]-sum;
}
for(int i=1;i<=cntq;i++)
printf("%lld\n",ans[i]);
maxx<<=1;
for(int i=0;i<=maxx;i++)
num[i]=0;
}
return 0;
}

本文详细探讨了一道编程竞赛题目,涉及尼姆博弈的结论在区间子区间计数问题中的应用。文章阐述了如何通过前缀异或和区间修改操作来求解不等于0的子区间个数,并给出C++代码实现,同时讨论了修改操作对前缀和的影响,展示了如何高效地处理区间修改和查询操作。
314

被折叠的 条评论
为什么被折叠?



